Example #1
0
 def f(tau):
     series_pt1 = 1-(tau**2)/(2*r2_mag**3) + \
              (tau**3)*od.dot(r2, r2_dot)/(2*r2_mag**5)
     coeff = (tau**4) / (24 * r2_mag**3)
     disgusting = 3*(od.dot(r2_dot, r2_dot)/(r2_mag)**2) - 1/(r2_mag**3) - \
              15*(od.dot(r2, r2_dot)/(r2_mag**2))**2 + 1/(r2_mag**3)
     return series_pt1 + coeff * disgusting
def f(tau, tau2, r2, r2Dot):
    res = 1 - (tau - tau2)**2 / (2 * odlib.mag(r2)**3)
    res += odlib.dot(r2, r2Dot) / (2 * odlib.mag(r2)**5) * (tau - tau2)**3
    O4 = 3 * (odlib.dot(r2Dot, r2Dot) / odlib.mag(r2)**2 - 1 / odlib.mag(r2)**3)
    O4 += -15 * (odlib.dot(r2, r2Dot) / odlib.mag(r2)**2)**2 + 1 / odlib.mag(r2)**3
    O4 *= ((tau - tau2)**4 / (24 * odlib.mag(r2)**3))
    return res + O4
Example #3
0
def orbitalElements(r, rDot):
    rMag = odlib.mag(r)
    vSqr = odlib.dot(rDot, rDot)
    a = 1 / (2 / rMag - vSqr)
    h = odlib.cross(r, rDot)
    hMag = odlib.mag(h)
    e = sqrt(1 - hMag**2 / a)
    i = acos(h[2] / hMag)
    cosOmega = -h[1] / (hMag * sin(i))
    sinOmega = h[0] / (hMag * sin(i))
    omega = odlib.sinCosToAngle(sinOmega, cosOmega)
    sinNu = (a * (1 - e**2) / hMag * (odlib.dot(r, rDot) / rMag)) / e
    cosNu = (a * (1 - e**2) / rMag - 1) / e
    nu = odlib.sinCosToAngle(sinNu, cosNu)
    cosU = (r[0] * cosOmega + r[1] * sinOmega) / rMag
    sinU = r[2] / (rMag * sin(i))
    u = odlib.sinCosToAngle(sinU, cosU)
    lowerOmega = u - nu
    E = acos((1 - rMag / a) / e)
    M = E - e * sin(E)

    return [a, e, i, omega, lowerOmega, M]
Example #4
0
 def g(tau):
     return tau - (tau**3) / (6 * r2_mag**3) + (tau**4) * (od.dot(
         r2, r2_dot)) / (4 * r2_mag**5)
Example #5
0
    DEC[i] = od.DMStoDeg(DEC[i]) * pi / 180
rho_hat1 = [cos(RA[0]) * cos(DEC[0]),
            sin(RA[0]) * cos(DEC[0]),
            sin(DEC[0])]  # calculating rho from RA and Dec
rho_hat2 = [cos(RA[1]) * cos(DEC[1]), sin(RA[1]) * cos(DEC[1]), sin(DEC[1])]
rho_hat3 = [cos(RA[2]) * cos(DEC[2]), sin(RA[2]) * cos(DEC[2]), sin(DEC[2])]

T0 = k * (t3 - t1)
T1 = k * (t1 - t2)
T3 = k * (t3 - t2)
a1 = T3 / T0
a2 = -1
a3 = -T1 / T0
a = [a1, a2, a3]

D0 = od.dot(rho_hat1, od.cross(rho_hat2, rho_hat3))
D = np.ones((3, 3))

rho = np.ones(3)

rho_hat = np.array([rho_hat1, rho_hat2, rho_hat3])

r2 = [0, 0, 0]
r2_dot = [0, 0, 0]  # set values for while loop to carry over

r2_old = [1, 1, 1]
r2_dot_old = [1, 1, 1]


# setting up while loop
def bool_comp(vec1, vec2):
Example #6
0
 def g(tau, tau2, r2, r2Dot):
     res = tau - tau2 - (tau - tau2)**3 / (6 * odlib.mag(r2)**3)
     res += (odlib.dot(r2, r2Dot) *
             (tau - tau2)**4) / (4 * odlib.mag(r2)**5)
     return res
Example #7
0
def orbit_ele(x_pos1, y_pos1, z_pos1, x_pos2, y_pos2, z_pos2, J1, J2):

    k = 0.01720209847
    r_dot = [(x_pos2 - x_pos1) / (k * (J2 - J1)),
             (y_pos2 - y_pos1) / (k * (J2 - J1)),
             (z_pos2 - z_pos1) / (k * (J2 - J1))]

    r = [x_pos1, y_pos1, z_pos1]
    r_mag = od.mag(r)

    h = od.cross(r, r_dot)
    h_x = h[0]
    h_y = h[1]
    h_z = h[2]
    h_mag = od.mag(h)
    v2 = od.dot(r_dot, r_dot)

    a = 1 / ((2 / r_mag) - v2)
    ecc = (1 - (h_mag)**2 / a)**.5
    inc = acos(h_z / h_mag)

    cO = -h_y / (h_mag * sin(inc))  # cos of Omega
    sO = h_x / (h_mag * sin(inc))  # sin of Omega
    Ome = od.rads(sO, cO)

    cU = (x_pos1 * cO + y_pos1 * sO) / r_mag  # cos of U
    sU = z_pos1 / (r_mag * sin(inc))  # sin of U
    U = od.rads(sU, cU)

    cV = (1 / ecc) * ((a * (1 - ecc**2)) / r_mag - 1)  # cos of V
    sV = (1 / ecc) * (((a * (1 - ecc**2)) / h_mag) *
                      (od.dot(r, r_dot)) / r_mag)
    V = od.rads(sV, cV)

    w = U - V
    E = acos((1 / ecc) * (1 - r_mag / a))
    M = E - ecc * sin(E)

    inc = inc * 180 / pi
    U = U * 180 / pi
    V = V * 180 / pi
    Ome = Ome * 180 / pi
    w = w * 180 / pi
    if w < 0:
        w = 360 + w
    E = E * 180 / pi
    M = M * 180 / pi
    experi = [a, ecc, inc, Ome, V, w, M]
    expect = [
        1.056800057682216, 3.442331106521022 * 10**-1, 2.515525601713781 * 10,
        236.2379793903064, 1.589559274581728 * 10**2, 255.5046093427637,
        1.404194621765141 * 10**2
    ]
    per_error = []
    for i in range(len(experi)):
        per_error.append(abs(experi[i] - expect[i]) / expect[i] * 100)
    print('Semi-major axis: ', a, ', Expected: ', expect[0], ', % error: ',
          per_error[0])
    print('Eccentricity: ', ecc, ', Expected: ', expect[1], ', % error: ',
          per_error[1])
    print('Inclination (degrees): ', inc, ', Expected: ', expect[2],
          ', % error: ', per_error[2])
    print('Longitude of the Ascending Node (degrees): ', Ome, ', Expected: ',
          expect[3], ', % error: ', per_error[3])
    print('True Anomoly (degrees): ', V, ', Expected: ', expect[4],
          ', % error: ', per_error[4])
    print('Argument of Perihelion, (degrees): ', w, ', Expected: ', expect[5],
          ', % error: ', per_error[5])
    print('Mean Anomaly (degrees): ', M, ', Expected: ', expect[6],
          ', % error: ', per_error[6])