def __call__(self, q_head, k_head_h, v_head_h, k_head_r, seg_embed, seg_mat, r_w_bias, r_r_bias, r_s_bias, attn_mask, **kwargs): inputs = tf_utils.pack_inputs([ q_head, k_head_h, v_head_h, k_head_r, seg_embed, seg_mat, r_w_bias, r_r_bias, r_s_bias, attn_mask ]) return super(RelativeAttention, self).__call__(inputs, **kwargs)
def __call__(self, h, g, r, r_w_bias, r_r_bias, seg_mat, r_s_bias, seg_embed, attn_mask_h, attn_mask_g, mems, target_mapping, **kwargs): inputs = tf_utils.pack_inputs([ h, g, r, r_w_bias, r_r_bias, seg_mat, r_s_bias, seg_embed, attn_mask_h, attn_mask_g, mems, target_mapping, ]) return super(RelativeMultiheadAttention, self).__call__(inputs, **kwargs)
def __call__(self, input_word_ids, input_mask=None, input_type_ids=None, **kwargs): inputs = tf_utils.pack_inputs([input_word_ids, input_mask, input_type_ids]) return super(BertModel, self).__call__(inputs, **kwargs)
def __call__(self, pooled_output, sequence_output=None, masked_lm_positions=None): inputs = tf_utils.pack_inputs( [pooled_output, sequence_output, masked_lm_positions]) return super(BertPretrainLayer, self).__call__(inputs)
def __call__(self, lm_output, sentence_output=None, lm_label_ids=None, lm_label_weights=None, sentence_labels=None): inputs = tf_utils.pack_inputs([ lm_output, sentence_output, lm_label_ids, lm_label_weights, sentence_labels ]) return super(BertPretrainLossAndMetricLayer, self).__call__(inputs)
def __call__(self, input_tensor, attention_mask=None, **kwargs): inputs = tf_utils.pack_inputs([input_tensor, attention_mask]) return super(TransformerBlock, self).__call__(inputs, **kwargs)
def __call__(self, from_tensor, to_tensor, attention_mask=None, **kwargs): inputs = tf_utils.pack_inputs([from_tensor, to_tensor, attention_mask]) return super(Attention, self).__call__(inputs, **kwargs)
def __call__(self, word_embeddings, token_type_ids=None, **kwargs): inputs = tf_utils.pack_inputs([word_embeddings, token_type_ids]) return super(EmbeddingPostprocessor, self).__call__(inputs, **kwargs)
def __call__(self, hidden, target, lookup_table, target_mask, **kwargs): inputs = tf_utils.pack_inputs([hidden, target, lookup_table, target_mask]) return super(LMLossLayer, self).__call__(inputs, **kwargs)
def __call__(self, hidden, labels, **kwargs): inputs = tf_utils.pack_inputs([hidden, labels]) return super(ClassificationLossLayer, self).__call__(inputs, **kwargs)
def __call__(self, word_embeddings, token_type_ids=None, **kwargs): inputs = tf_utils.pack_inputs([word_embeddings, token_type_ids]) return super(EmbeddingPostprocessor, self).__call__(inputs, **kwargs) # pytype: disable=attribute-error # typed-keras