def classifier_model(bert_config,
                     num_labels,
                     max_seq_length,
                     final_layer_initializer=None,
                     hub_module_url=None):
  """BERT classifier model in functional API style.

  Construct a Keras model for predicting `num_labels` outputs from an input with
  maximum sequence length `max_seq_length`.

  Args:
    bert_config: BertConfig or AlbertConfig, the config defines the core
      BERT or ALBERT model.
    num_labels: integer, the number of classes.
    max_seq_length: integer, the maximum input sequence length.
    final_layer_initializer: Initializer for final dense layer. Defaulted
      TruncatedNormal initializer.
    hub_module_url: TF-Hub path/url to Bert module.

  Returns:
    Combined prediction model (words, mask, type) -> (one-hot labels)
    BERT sub-model (words, mask, type) -> (bert_outputs)
  """
  if final_layer_initializer is not None:
    initializer = final_layer_initializer
  else:
    initializer = tf.keras.initializers.TruncatedNormal(
        stddev=bert_config.initializer_range)

  if not hub_module_url:
    bert_encoder = get_transformer_encoder(bert_config, max_seq_length)
    return bert_classifier.BertClassifier(
        bert_encoder,
        num_classes=num_labels,
        dropout_rate=bert_config.hidden_dropout_prob,
        initializer=initializer), bert_encoder

  input_word_ids = tf.keras.layers.Input(
      shape=(max_seq_length,), dtype=tf.int32, name='input_word_ids')
  input_mask = tf.keras.layers.Input(
      shape=(max_seq_length,), dtype=tf.int32, name='input_mask')
  input_type_ids = tf.keras.layers.Input(
      shape=(max_seq_length,), dtype=tf.int32, name='input_type_ids')
  bert_model = hub.KerasLayer(hub_module_url, trainable=True)
  pooled_output, _ = bert_model([input_word_ids, input_mask, input_type_ids])
  output = tf.keras.layers.Dropout(rate=bert_config.hidden_dropout_prob)(
      pooled_output)

  output = tf.keras.layers.Dense(
      num_labels,
      kernel_initializer=initializer,
      name='output')(
          output)
  return tf.keras.Model(
      inputs={
          'input_word_ids': input_word_ids,
          'input_mask': input_mask,
          'input_type_ids': input_type_ids
      },
      outputs=output), bert_model
Example #2
0
  def test_bert_trainer(self):
    """Validate that the Keras object can be created."""
    # Build a transformer network to use within the BERT trainer.
    vocab_size = 100
    sequence_length = 512
    test_network = networks.TransformerEncoder(
        vocab_size=vocab_size, num_layers=2, sequence_length=sequence_length)

    # Create a BERT trainer with the created network.
    num_classes = 3
    bert_trainer_model = bert_classifier.BertClassifier(
        test_network,
        num_classes=num_classes)

    # Create a set of 2-dimensional inputs (the first dimension is implicit).
    word_ids = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
    mask = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
    type_ids = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)

    # Invoke the trainer model on the inputs. This causes the layer to be built.
    cls_outs = bert_trainer_model([word_ids, mask, type_ids])

    # Validate that the outputs are of the expected shape.
    expected_classification_shape = [None, num_classes]
    self.assertAllEqual(expected_classification_shape, cls_outs.shape.as_list())
Example #3
0
  def test_bert_trainer_tensor_call(self):
    """Validate that the Keras object can be invoked."""
    # Build a transformer network to use within the BERT trainer. (Here, we use
    # a short sequence_length for convenience.)
    test_network = networks.TransformerEncoder(
        vocab_size=100, num_layers=2, sequence_length=2)

    # Create a BERT trainer with the created network.
    bert_trainer_model = bert_classifier.BertClassifier(
        test_network, num_classes=2)

    # Create a set of 2-dimensional data tensors to feed into the model.
    word_ids = tf.constant([[1, 1], [2, 2]], dtype=tf.int32)
    mask = tf.constant([[1, 1], [1, 0]], dtype=tf.int32)
    type_ids = tf.constant([[1, 1], [2, 2]], dtype=tf.int32)

    # Invoke the trainer model on the tensors. In Eager mode, this does the
    # actual calculation. (We can't validate the outputs, since the network is
    # too complex: this simply ensures we're not hitting runtime errors.)
    _ = bert_trainer_model([word_ids, mask, type_ids])
Example #4
0
  def test_serialize_deserialize(self):
    """Validate that the BERT trainer can be serialized and deserialized."""
    # Build a transformer network to use within the BERT trainer. (Here, we use
    # a short sequence_length for convenience.)
    test_network = networks.TransformerEncoder(
        vocab_size=100, num_layers=2, sequence_length=5)

    # Create a BERT trainer with the created network. (Note that all the args
    # are different, so we can catch any serialization mismatches.)
    bert_trainer_model = bert_classifier.BertClassifier(
        test_network, num_classes=4, initializer='zeros', output='predictions')

    # Create another BERT trainer via serialization and deserialization.
    config = bert_trainer_model.get_config()
    new_bert_trainer_model = bert_classifier.BertClassifier.from_config(config)

    # Validate that the config can be forced to JSON.
    _ = new_bert_trainer_model.to_json()

    # If the serialization was successful, the new config should match the old.
    self.assertAllEqual(bert_trainer_model.get_config(),
                        new_bert_trainer_model.get_config())
Example #5
0
def classifier_model(bert_config,
                     float_type,
                     num_labels,
                     max_seq_length,
                     final_layer_initializer=None,
                     hub_module_url=None):
    """BERT classifier model in functional API style.

  Construct a Keras model for predicting `num_labels` outputs from an input with
  maximum sequence length `max_seq_length`.

  Args:
    bert_config: BertConfig, the config defines the core BERT model.
    float_type: dtype, tf.float32 or tf.bfloat16.
    num_labels: integer, the number of classes.
    max_seq_length: integer, the maximum input sequence length.
    final_layer_initializer: Initializer for final dense layer. Defaulted
      TruncatedNormal initializer.
    hub_module_url: TF-Hub path/url to Bert module.

  Returns:
    Combined prediction model (words, mask, type) -> (one-hot labels)
    BERT sub-model (words, mask, type) -> (bert_outputs)
  """
    if final_layer_initializer is not None:
        initializer = final_layer_initializer
    else:
        initializer = tf.keras.initializers.TruncatedNormal(
            stddev=bert_config.initializer_range)

    if not hub_module_url:
        bert_encoder = networks.TransformerEncoder(
            vocab_size=bert_config.vocab_size,
            hidden_size=bert_config.hidden_size,
            num_layers=bert_config.num_hidden_layers,
            num_attention_heads=bert_config.num_attention_heads,
            intermediate_size=bert_config.intermediate_size,
            activation=tf_utils.get_activation('gelu'),
            dropout_rate=bert_config.hidden_dropout_prob,
            attention_dropout_rate=bert_config.attention_probs_dropout_prob,
            sequence_length=max_seq_length,
            max_sequence_length=bert_config.max_position_embeddings,
            type_vocab_size=bert_config.type_vocab_size,
            initializer=tf.keras.initializers.TruncatedNormal(
                stddev=bert_config.initializer_range))
        return bert_classifier.BertClassifier(
            bert_encoder,
            num_classes=num_labels,
            dropout_rate=bert_config.hidden_dropout_prob,
            initializer=initializer), bert_encoder

    input_word_ids = tf.keras.layers.Input(shape=(max_seq_length, ),
                                           dtype=tf.int32,
                                           name='input_word_ids')
    input_mask = tf.keras.layers.Input(shape=(max_seq_length, ),
                                       dtype=tf.int32,
                                       name='input_mask')
    input_type_ids = tf.keras.layers.Input(shape=(max_seq_length, ),
                                           dtype=tf.int32,
                                           name='input_type_ids')
    bert_model = hub.KerasLayer(hub_module_url, trainable=True)
    pooled_output, _ = bert_model([input_word_ids, input_mask, input_type_ids])
    output = tf.keras.layers.Dropout(
        rate=bert_config.hidden_dropout_prob)(pooled_output)

    output = tf.keras.layers.Dense(num_labels,
                                   kernel_initializer=initializer,
                                   name='output',
                                   dtype=float_type)(output)
    return tf.keras.Model(inputs={
        'input_word_ids': input_word_ids,
        'input_mask': input_mask,
        'input_type_ids': input_type_ids
    },
                          outputs=output), bert_model