def _batch_norm_ops(self, test=False): name = "batch_norm" g = tf.Graph() with g.as_default(): tf.compat.v1.set_random_seed(self.name_to_seed(name)) input_tensor = tf.compat.v1.get_variable( "input_tensor", dtype=tf.float32, initializer=tf.random.uniform((32, 16, 16, 3), maxval=1) ) layer = resnet_model.batch_norm( inputs=input_tensor, data_format=DATA_FORMAT, training=True) self._save_or_test_ops( name=name, graph=g, ops_to_eval=[input_tensor, layer], test=test, correctness_function=self.default_correctness_function )
def _batch_norm_ops(self, test=False): name = "batch_norm" g = tf.Graph() with g.as_default(): tf.set_random_seed(self.name_to_seed(name)) input_tensor = tf.get_variable( "input_tensor", dtype=tf.float32, initializer=tf.random_uniform((32, 16, 16, 3), maxval=1) ) layer = resnet_model.batch_norm( inputs=input_tensor, data_format=DATA_FORMAT, training=True) self._save_or_test_ops( name=name, graph=g, ops_to_eval=[input_tensor, layer], test=test, correctness_function=self.default_correctness_function )