def initialize(params: base_configs.ExperimentConfig,
               dataset_builder: dataset_factory.DatasetBuilder):
    """Initializes backend related initializations."""
    keras_utils.set_session_config(enable_eager=params.runtime.run_eagerly,
                                   enable_xla=params.runtime.enable_xla)
    if params.runtime.gpu_threads_enabled:
        keras_utils.set_gpu_thread_mode_and_count(
            per_gpu_thread_count=params.runtime.per_gpu_thread_count,
            gpu_thread_mode=params.runtime.gpu_thread_mode,
            num_gpus=params.runtime.num_gpus,
            datasets_num_private_threads=params.runtime.
            dataset_num_private_threads)

    performance.set_mixed_precision_policy(dataset_builder.dtype,
                                           get_loss_scale(params))
    if tf.config.list_physical_devices('GPU'):
        data_format = 'channels_first'
    else:
        data_format = 'channels_last'
    tf.keras.backend.set_image_data_format(data_format)
    distribution_utils.configure_cluster(params.runtime.worker_hosts,
                                         params.runtime.task_index)
    if params.runtime.run_eagerly:
        # Enable eager execution to allow step-by-step debugging
        tf.config.experimental_run_functions_eagerly(True)
 def _init_gpu_and_data_threads(self):
   """Set env variables before any TF calls."""
   if FLAGS.tf_gpu_thread_mode:
     keras_utils.set_gpu_thread_mode_and_count(
         per_gpu_thread_count=FLAGS.per_gpu_thread_count,
         gpu_thread_mode=FLAGS.tf_gpu_thread_mode,
         num_gpus=self.num_gpus,
         datasets_num_private_threads=FLAGS.datasets_num_private_threads)
def main(_):
  flags_obj = flags.FLAGS

  # Execute flag override logic for better model performance
  if flags_obj.tf_gpu_thread_mode:
    keras_utils.set_gpu_thread_mode_and_count(
        per_gpu_thread_count=flags_obj.per_gpu_thread_count,
        gpu_thread_mode=flags_obj.tf_gpu_thread_mode,
        num_gpus=flags_obj.num_gpus,
        datasets_num_private_threads=flags_obj.datasets_num_private_threads)

  task = TransformerTntTask(flags_obj)
  task.train_and_eval()
def main(_):
  flags_obj = flags.FLAGS
  with logger.benchmark_context(flags_obj):
    task = TransformerTask(flags_obj)

    # Execute flag override logic for better model performance
    if flags_obj.tf_gpu_thread_mode:
      keras_utils.set_gpu_thread_mode_and_count(
          per_gpu_thread_count=flags_obj.per_gpu_thread_count,
          gpu_thread_mode=flags_obj.tf_gpu_thread_mode,
          num_gpus=flags_obj.num_gpus,
          datasets_num_private_threads=flags_obj.datasets_num_private_threads)

    if flags_obj.mode == "train":
      task.train()
    elif flags_obj.mode == "predict":
      task.predict()
    elif flags_obj.mode == "eval":
      task.eval()
    else:
      raise ValueError("Invalid mode {}".format(flags_obj.mode))
Example #5
0
def main(_):
  flags_obj = flags.FLAGS
  if flags_obj.enable_mlir_bridge:
    tf.config.experimental.enable_mlir_bridge()
  task = TransformerTask(flags_obj)

  # Execute flag override logic for better model performance
  if flags_obj.tf_gpu_thread_mode:
    keras_utils.set_gpu_thread_mode_and_count(
        per_gpu_thread_count=flags_obj.per_gpu_thread_count,
        gpu_thread_mode=flags_obj.tf_gpu_thread_mode,
        num_gpus=flags_obj.num_gpus,
        datasets_num_private_threads=flags_obj.datasets_num_private_threads)

  if flags_obj.mode == "train":
    task.train()
  elif flags_obj.mode == "predict":
    task.predict()
  elif flags_obj.mode == "eval":
    task.eval()
  else:
    raise ValueError("Invalid mode {}".format(flags_obj.mode))
def initialize(params: base_configs.ExperimentConfig,
               dataset_builder: dataset_factory.DatasetBuilder):
    """Initializes backend related initializations."""
    keras_utils.set_session_config(enable_xla=params.runtime.enable_xla)
    performance.set_mixed_precision_policy(dataset_builder.dtype)
    if tf.config.list_physical_devices('GPU'):
        data_format = 'channels_first'
    else:
        data_format = 'channels_last'
    tf.keras.backend.set_image_data_format(data_format)
    if params.runtime.run_eagerly:
        # Enable eager execution to allow step-by-step debugging
        tf.config.experimental_run_functions_eagerly(True)
    if tf.config.list_physical_devices('GPU'):
        if params.runtime.gpu_thread_mode:
            keras_utils.set_gpu_thread_mode_and_count(
                per_gpu_thread_count=params.runtime.per_gpu_thread_count,
                gpu_thread_mode=params.runtime.gpu_thread_mode,
                num_gpus=params.runtime.num_gpus,
                datasets_num_private_threads=params.runtime.
                dataset_num_private_threads)  # pylint:disable=line-too-long
        if params.runtime.batchnorm_spatial_persistent:
            os.environ['TF_USE_CUDNN_BATCHNORM_SPATIAL_PERSISTENT'] = '1'
Example #7
0
def run(flags_obj):
    """Run ResNet Cifar-10 training and eval loop using native Keras APIs.

  Args:
    flags_obj: An object containing parsed flag values.

  Raises:
    ValueError: If fp16 is passed as it is not currently supported.

  Returns:
    Dictionary of training and eval stats.
  """
    keras_utils.set_session_config(enable_eager=flags_obj.enable_eager,
                                   enable_xla=flags_obj.enable_xla)

    # Execute flag override logic for better model performance
    if flags_obj.tf_gpu_thread_mode:
        keras_utils.set_gpu_thread_mode_and_count(
            per_gpu_thread_count=flags_obj.per_gpu_thread_count,
            gpu_thread_mode=flags_obj.tf_gpu_thread_mode,
            num_gpus=flags_obj.num_gpus,
            datasets_num_private_threads=flags_obj.datasets_num_private_threads
        )
    common.set_cudnn_batchnorm_mode()

    dtype = flags_core.get_tf_dtype(flags_obj)
    if dtype == 'fp16':
        raise ValueError(
            'dtype fp16 is not supported in Keras. Use the default '
            'value(fp32).')

    data_format = flags_obj.data_format
    if data_format is None:
        data_format = ('channels_first'
                       if tf.config.list_physical_devices('GPU') else
                       'channels_last')
    tf.keras.backend.set_image_data_format(data_format)

    strategy = distribution_utils.get_distribution_strategy(
        distribution_strategy=flags_obj.distribution_strategy,
        num_gpus=flags_obj.num_gpus,
        all_reduce_alg=flags_obj.all_reduce_alg,
        num_packs=flags_obj.num_packs)

    if strategy:
        # flags_obj.enable_get_next_as_optional controls whether enabling
        # get_next_as_optional behavior in DistributedIterator. If true, last
        # partial batch can be supported.
        strategy.extended.experimental_enable_get_next_as_optional = (
            flags_obj.enable_get_next_as_optional)

    strategy_scope = distribution_utils.get_strategy_scope(strategy)

    if flags_obj.use_synthetic_data:
        synthetic_util.set_up_synthetic_data()
        input_fn = common.get_synth_input_fn(
            height=cifar_preprocessing.HEIGHT,
            width=cifar_preprocessing.WIDTH,
            num_channels=cifar_preprocessing.NUM_CHANNELS,
            num_classes=cifar_preprocessing.NUM_CLASSES,
            dtype=flags_core.get_tf_dtype(flags_obj),
            drop_remainder=True)
    else:
        synthetic_util.undo_set_up_synthetic_data()
        input_fn = cifar_preprocessing.input_fn

    train_input_dataset = input_fn(
        is_training=True,
        data_dir=flags_obj.data_dir,
        batch_size=flags_obj.batch_size,
        parse_record_fn=cifar_preprocessing.parse_record,
        datasets_num_private_threads=flags_obj.datasets_num_private_threads,
        dtype=dtype,
        # Setting drop_remainder to avoid the partial batch logic in normalization
        # layer, which triggers tf.where and leads to extra memory copy of input
        # sizes between host and GPU.
        drop_remainder=(not flags_obj.enable_get_next_as_optional))

    eval_input_dataset = None
    if not flags_obj.skip_eval:
        eval_input_dataset = input_fn(
            is_training=False,
            data_dir=flags_obj.data_dir,
            batch_size=flags_obj.batch_size,
            parse_record_fn=cifar_preprocessing.parse_record)

    steps_per_epoch = (cifar_preprocessing.NUM_IMAGES['train'] //
                       flags_obj.batch_size)
    lr_schedule = 0.1
    if flags_obj.use_tensor_lr:
        initial_learning_rate = common.BASE_LEARNING_RATE * flags_obj.batch_size / 128
        lr_schedule = tf.keras.optimizers.schedules.PiecewiseConstantDecay(
            boundaries=list(p[1] * steps_per_epoch for p in LR_SCHEDULE),
            values=[initial_learning_rate] + list(p[0] * initial_learning_rate
                                                  for p in LR_SCHEDULE))

    with strategy_scope:
        optimizer = common.get_optimizer(lr_schedule)
        model = resnet_cifar_model.resnet56(
            classes=cifar_preprocessing.NUM_CLASSES)
        model.compile(loss='sparse_categorical_crossentropy',
                      optimizer=optimizer,
                      metrics=(['sparse_categorical_accuracy']
                               if flags_obj.report_accuracy_metrics else None),
                      run_eagerly=flags_obj.run_eagerly)

    train_epochs = flags_obj.train_epochs

    callbacks = common.get_callbacks(steps_per_epoch)

    if not flags_obj.use_tensor_lr:
        lr_callback = LearningRateBatchScheduler(
            schedule=learning_rate_schedule,
            batch_size=flags_obj.batch_size,
            steps_per_epoch=steps_per_epoch)
        callbacks.append(lr_callback)

    # if mutliple epochs, ignore the train_steps flag.
    if train_epochs <= 1 and flags_obj.train_steps:
        steps_per_epoch = min(flags_obj.train_steps, steps_per_epoch)
        train_epochs = 1

    num_eval_steps = (cifar_preprocessing.NUM_IMAGES['validation'] //
                      flags_obj.batch_size)

    validation_data = eval_input_dataset
    if flags_obj.skip_eval:
        if flags_obj.set_learning_phase_to_train:
            # TODO(haoyuzhang): Understand slowdown of setting learning phase when
            # not using distribution strategy.
            tf.keras.backend.set_learning_phase(1)
        num_eval_steps = None
        validation_data = None

    if not strategy and flags_obj.explicit_gpu_placement:
        # TODO(b/135607227): Add device scope automatically in Keras training loop
        # when not using distribition strategy.
        no_dist_strat_device = tf.device('/device:GPU:0')
        no_dist_strat_device.__enter__()

    history = model.fit(train_input_dataset,
                        epochs=train_epochs,
                        steps_per_epoch=steps_per_epoch,
                        callbacks=callbacks,
                        validation_steps=num_eval_steps,
                        validation_data=validation_data,
                        validation_freq=flags_obj.epochs_between_evals,
                        verbose=2)
    eval_output = None
    if not flags_obj.skip_eval:
        eval_output = model.evaluate(eval_input_dataset,
                                     steps=num_eval_steps,
                                     verbose=2)

    if not strategy and flags_obj.explicit_gpu_placement:
        no_dist_strat_device.__exit__()

    stats = common.build_stats(history, eval_output, callbacks)
    return stats
Example #8
0
def run(flags_obj):
  """Run ResNet ImageNet training and eval loop using native Keras APIs.

  Args:
    flags_obj: An object containing parsed flag values.

  Raises:
    ValueError: If fp16 is passed as it is not currently supported.
    NotImplementedError: If some features are not currently supported.

  Returns:
    Dictionary of training and eval stats.
  """
  keras_utils.set_session_config(
      enable_eager=flags_obj.enable_eager,
      enable_xla=flags_obj.enable_xla)

  # Execute flag override logic for better model performance
  if flags_obj.tf_gpu_thread_mode:
    keras_utils.set_gpu_thread_mode_and_count(
        per_gpu_thread_count=flags_obj.per_gpu_thread_count,
        gpu_thread_mode=flags_obj.tf_gpu_thread_mode,
        num_gpus=flags_obj.num_gpus,
        datasets_num_private_threads=flags_obj.datasets_num_private_threads)
  common.set_cudnn_batchnorm_mode()

  dtype = flags_core.get_tf_dtype(flags_obj)
  performance.set_mixed_precision_policy(
      flags_core.get_tf_dtype(flags_obj),
      flags_core.get_loss_scale(flags_obj, default_for_fp16=128))

  data_format = flags_obj.data_format
  if data_format is None:
    data_format = ('channels_first' if tf.config.list_physical_devices('GPU')
                   else 'channels_last')
  tf.keras.backend.set_image_data_format(data_format)

  # Configures cluster spec for distribution strategy.
  _ = distribution_utils.configure_cluster(flags_obj.worker_hosts,
                                           flags_obj.task_index)

  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=flags_obj.distribution_strategy,
      num_gpus=flags_obj.num_gpus,
      all_reduce_alg=flags_obj.all_reduce_alg,
      num_packs=flags_obj.num_packs,
      tpu_address=flags_obj.tpu)

  if strategy:
    # flags_obj.enable_get_next_as_optional controls whether enabling
    # get_next_as_optional behavior in DistributedIterator. If true, last
    # partial batch can be supported.
    strategy.extended.experimental_enable_get_next_as_optional = (
        flags_obj.enable_get_next_as_optional
    )

  strategy_scope = distribution_utils.get_strategy_scope(strategy)

  # pylint: disable=protected-access
  if flags_obj.use_synthetic_data:
    input_fn = common.get_synth_input_fn(
        height=imagenet_preprocessing.DEFAULT_IMAGE_SIZE,
        width=imagenet_preprocessing.DEFAULT_IMAGE_SIZE,
        num_channels=imagenet_preprocessing.NUM_CHANNELS,
        num_classes=imagenet_preprocessing.NUM_CLASSES,
        dtype=dtype,
        drop_remainder=True)
  else:
    input_fn = imagenet_preprocessing.input_fn

  # When `enable_xla` is True, we always drop the remainder of the batches
  # in the dataset, as XLA-GPU doesn't support dynamic shapes.
  drop_remainder = flags_obj.enable_xla

  # Current resnet_model.resnet50 input format is always channel-last.
  # We use keras_application mobilenet model which input format is depends on
  # the keras beckend image data format.
  # This use_keras_image_data_format flags indicates whether image preprocessor
  # output format should be same as the keras backend image data format or just
  # channel-last format.
  use_keras_image_data_format = (flags_obj.model == 'mobilenet')
  train_input_dataset = input_fn(
      is_training=True,
      data_dir=flags_obj.data_dir,
      batch_size=flags_obj.batch_size,
      parse_record_fn=imagenet_preprocessing.get_parse_record_fn(
          use_keras_image_data_format=use_keras_image_data_format),
      datasets_num_private_threads=flags_obj.datasets_num_private_threads,
      dtype=dtype,
      drop_remainder=drop_remainder,
      tf_data_experimental_slack=flags_obj.tf_data_experimental_slack,
      training_dataset_cache=flags_obj.training_dataset_cache,
  )

  eval_input_dataset = None
  if not flags_obj.skip_eval:
    eval_input_dataset = input_fn(
        is_training=False,
        data_dir=flags_obj.data_dir,
        batch_size=flags_obj.batch_size,
        parse_record_fn=imagenet_preprocessing.get_parse_record_fn(
            use_keras_image_data_format=use_keras_image_data_format),
        dtype=dtype,
        drop_remainder=drop_remainder)

  lr_schedule = common.PiecewiseConstantDecayWithWarmup(
      batch_size=flags_obj.batch_size,
      epoch_size=imagenet_preprocessing.NUM_IMAGES['train'],
      warmup_epochs=common.LR_SCHEDULE[0][1],
      boundaries=list(p[1] for p in common.LR_SCHEDULE[1:]),
      multipliers=list(p[0] for p in common.LR_SCHEDULE),
      compute_lr_on_cpu=True)
  steps_per_epoch = (
      imagenet_preprocessing.NUM_IMAGES['train'] // flags_obj.batch_size)

  with strategy_scope:
    if flags_obj.optimizer == 'resnet50_default':
      optimizer = common.get_optimizer(lr_schedule)
    elif flags_obj.optimizer == 'mobilenet_default':
      initial_learning_rate = \
          flags_obj.initial_learning_rate_per_sample * flags_obj.batch_size
      optimizer = tf.keras.optimizers.SGD(
          learning_rate=tf.keras.optimizers.schedules.ExponentialDecay(
              initial_learning_rate,
              decay_steps=steps_per_epoch * flags_obj.num_epochs_per_decay,
              decay_rate=flags_obj.lr_decay_factor,
              staircase=True),
          momentum=0.9)
    if flags_obj.fp16_implementation == 'graph_rewrite':
      # Note: when flags_obj.fp16_implementation == "graph_rewrite", dtype as
      # determined by flags_core.get_tf_dtype(flags_obj) would be 'float32'
      # which will ensure tf.compat.v2.keras.mixed_precision and
      # tf.train.experimental.enable_mixed_precision_graph_rewrite do not double
      # up.
      optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite(
          optimizer)

    # TODO(hongkuny): Remove trivial model usage and move it to benchmark.
    if flags_obj.use_trivial_model:
      model = test_utils.trivial_model(imagenet_preprocessing.NUM_CLASSES)
    elif flags_obj.model == 'resnet50_v1.5':
      model = resnet_model.resnet50(
          num_classes=imagenet_preprocessing.NUM_CLASSES)
    elif flags_obj.model == 'mobilenet':
      # TODO(kimjaehong): Remove layers attribute when minimum TF version
      # support 2.0 layers by default.
      model = tf.keras.applications.mobilenet.MobileNet(
          weights=None,
          classes=imagenet_preprocessing.NUM_CLASSES,
          layers=tf.keras.layers)
    if flags_obj.pretrained_filepath:
      model.load_weights(flags_obj.pretrained_filepath)

    if flags_obj.pruning_method == 'polynomial_decay':
      if dtype != tf.float32:
        raise NotImplementedError(
            'Pruning is currently only supported on dtype=tf.float32.')
      pruning_params = {
          'pruning_schedule':
              tfmot.sparsity.keras.PolynomialDecay(
                  initial_sparsity=flags_obj.pruning_initial_sparsity,
                  final_sparsity=flags_obj.pruning_final_sparsity,
                  begin_step=flags_obj.pruning_begin_step,
                  end_step=flags_obj.pruning_end_step,
                  frequency=flags_obj.pruning_frequency),
      }
      model = tfmot.sparsity.keras.prune_low_magnitude(model, **pruning_params)
    elif flags_obj.pruning_method:
      raise NotImplementedError(
          'Only polynomial_decay is currently supported.')

    model.compile(
        loss='sparse_categorical_crossentropy',
        optimizer=optimizer,
        metrics=(['sparse_categorical_accuracy']
                 if flags_obj.report_accuracy_metrics else None),
        run_eagerly=flags_obj.run_eagerly)

  train_epochs = flags_obj.train_epochs

  callbacks = common.get_callbacks(
      pruning_method=flags_obj.pruning_method,
      enable_checkpoint_and_export=flags_obj.enable_checkpoint_and_export,
      model_dir=flags_obj.model_dir)

  # if mutliple epochs, ignore the train_steps flag.
  if train_epochs <= 1 and flags_obj.train_steps:
    steps_per_epoch = min(flags_obj.train_steps, steps_per_epoch)
    train_epochs = 1

  num_eval_steps = (
      imagenet_preprocessing.NUM_IMAGES['validation'] // flags_obj.batch_size)

  validation_data = eval_input_dataset
  if flags_obj.skip_eval:
    # Only build the training graph. This reduces memory usage introduced by
    # control flow ops in layers that have different implementations for
    # training and inference (e.g., batch norm).
    if flags_obj.set_learning_phase_to_train:
      # TODO(haoyuzhang): Understand slowdown of setting learning phase when
      # not using distribution strategy.
      tf.keras.backend.set_learning_phase(1)
    num_eval_steps = None
    validation_data = None

  if not strategy and flags_obj.explicit_gpu_placement:
    # TODO(b/135607227): Add device scope automatically in Keras training loop
    # when not using distribition strategy.
    no_dist_strat_device = tf.device('/device:GPU:0')
    no_dist_strat_device.__enter__()

  history = model.fit(train_input_dataset,
                      epochs=train_epochs,
                      steps_per_epoch=steps_per_epoch,
                      callbacks=callbacks,
                      validation_steps=num_eval_steps,
                      validation_data=validation_data,
                      validation_freq=flags_obj.epochs_between_evals,
                      verbose=2)

  eval_output = None
  if not flags_obj.skip_eval:
    eval_output = model.evaluate(eval_input_dataset,
                                 steps=num_eval_steps,
                                 verbose=2)

  if flags_obj.pruning_method:
    model = tfmot.sparsity.keras.strip_pruning(model)
  if flags_obj.enable_checkpoint_and_export:
    if dtype == tf.bfloat16:
      logging.warning('Keras model.save does not support bfloat16 dtype.')
    else:
      # Keras model.save assumes a float32 input designature.
      export_path = os.path.join(flags_obj.model_dir, 'saved_model')
      model.save(export_path, include_optimizer=False)

  if not strategy and flags_obj.explicit_gpu_placement:
    no_dist_strat_device.__exit__()

  stats = common.build_stats(history, eval_output, callbacks)
  return stats
def run(flags_obj):
    """Run ResNet ImageNet training and eval loop using custom training loops.

  Args:
    flags_obj: An object containing parsed flag values.

  Raises:
    ValueError: If fp16 is passed as it is not currently supported.

  Returns:
    Dictionary of training and eval stats.
  """
    keras_utils.set_session_config()
    performance.set_mixed_precision_policy(flags_core.get_tf_dtype(flags_obj))

    if tf.config.list_physical_devices('GPU'):
        if flags_obj.tf_gpu_thread_mode:
            keras_utils.set_gpu_thread_mode_and_count(
                per_gpu_thread_count=flags_obj.per_gpu_thread_count,
                gpu_thread_mode=flags_obj.tf_gpu_thread_mode,
                num_gpus=flags_obj.num_gpus,
                datasets_num_private_threads=flags_obj.
                datasets_num_private_threads)
        common.set_cudnn_batchnorm_mode()

    data_format = flags_obj.data_format
    if data_format is None:
        data_format = ('channels_first'
                       if tf.config.list_physical_devices('GPU') else
                       'channels_last')
    tf.keras.backend.set_image_data_format(data_format)

    strategy = distribute_utils.get_distribution_strategy(
        distribution_strategy=flags_obj.distribution_strategy,
        num_gpus=flags_obj.num_gpus,
        all_reduce_alg=flags_obj.all_reduce_alg,
        num_packs=flags_obj.num_packs,
        tpu_address=flags_obj.tpu)

    per_epoch_steps, train_epochs, eval_steps = get_num_train_iterations(
        flags_obj)
    if flags_obj.steps_per_loop is None:
        steps_per_loop = per_epoch_steps
    elif flags_obj.steps_per_loop > per_epoch_steps:
        steps_per_loop = per_epoch_steps
        logging.warn('Setting steps_per_loop to %d to respect epoch boundary.',
                     steps_per_loop)
    else:
        steps_per_loop = flags_obj.steps_per_loop

    logging.info(
        'Training %d epochs, each epoch has %d steps, '
        'total steps: %d; Eval %d steps', train_epochs, per_epoch_steps,
        train_epochs * per_epoch_steps, eval_steps)

    time_callback = keras_utils.TimeHistory(
        flags_obj.batch_size,
        flags_obj.log_steps,
        logdir=flags_obj.model_dir if flags_obj.enable_tensorboard else None)
    with distribute_utils.get_strategy_scope(strategy):
        runnable = resnet_runnable.ResnetRunnable(flags_obj, time_callback,
                                                  per_epoch_steps)

    eval_interval = flags_obj.epochs_between_evals * per_epoch_steps
    checkpoint_interval = (steps_per_loop * 5
                           if flags_obj.enable_checkpoint_and_export else None)
    summary_interval = steps_per_loop if flags_obj.enable_tensorboard else None

    checkpoint_manager = tf.train.CheckpointManager(
        runnable.checkpoint,
        directory=flags_obj.model_dir,
        max_to_keep=10,
        step_counter=runnable.global_step,
        checkpoint_interval=checkpoint_interval)

    resnet_controller = orbit.Controller(
        strategy=strategy,
        trainer=runnable,
        evaluator=runnable if not flags_obj.skip_eval else None,
        global_step=runnable.global_step,
        steps_per_loop=steps_per_loop,
        checkpoint_manager=checkpoint_manager,
        summary_interval=summary_interval,
        summary_dir=flags_obj.model_dir,
        eval_summary_dir=os.path.join(flags_obj.model_dir, 'eval'))

    time_callback.on_train_begin()
    if not flags_obj.skip_eval:
        resnet_controller.train_and_evaluate(train_steps=per_epoch_steps *
                                             train_epochs,
                                             eval_steps=eval_steps,
                                             eval_interval=eval_interval)
    else:
        resnet_controller.train(steps=per_epoch_steps * train_epochs)
    time_callback.on_train_end()

    stats = build_stats(runnable, time_callback)
    return stats
Example #10
0
def run_predict(flags_obj, datasets_override=None, strategy_override=None):
  keras_utils.set_session_config(
    enable_eager=flags_obj.enable_eager,
    enable_xla=flags_obj.enable_xla)

  # Execute flag override logic for better model performance
  if flags_obj.tf_gpu_thread_mode:
    keras_utils.set_gpu_thread_mode_and_count(
      per_gpu_thread_count=flags_obj.per_gpu_thread_count,
      gpu_thread_mode=flags_obj.tf_gpu_thread_mode,
      num_gpus=1,
      datasets_num_private_threads=flags_obj.datasets_num_private_threads)
  common.set_cudnn_batchnorm_mode()

  performance.set_mixed_precision_policy(
    flags_core.get_tf_dtype(flags_obj),
    flags_core.get_loss_scale(flags_obj, default_for_fp16=128))

  data_format = flags_obj.data_format
  if data_format is None:
    data_format = ('channels_first'
                   if tf.test.is_built_with_cuda() else 'channels_last')
  tf.keras.backend.set_image_data_format(data_format)

  # Configures cluster spec for distribution strategy.
  _ = distribution_utils.configure_cluster(flags_obj.worker_hosts,
                                           flags_obj.task_index)

  strategy = distribution_utils.get_distribution_strategy(
    distribution_strategy=flags_obj.distribution_strategy,
    num_gpus=1,
    all_reduce_alg=flags_obj.all_reduce_alg,
    num_packs=flags_obj.num_packs,
    tpu_address=flags_obj.tpu)

  if strategy:
  # flags_obj.enable_get_next_as_optional controls whether enabling
  # get_next_as_optional behavior in DistributedIterator. If true, last
  # partial batch can be supported.
    strategy.extended.experimental_enable_get_next_as_optional = (
      flags_obj.enable_get_next_as_optional
    )

  strategy_scope = distribution_utils.get_strategy_scope(strategy)

  distribution_utils.undo_set_up_synthetic_data()


  train_input_dataset, eval_input_dataset, tr_dataset, te_dataset = setup_datasets(flags_obj, shuffle=False, save_labels=True)

  pred_input_dataset, pred_dataset = eval_input_dataset, te_dataset

  with strategy_scope:
    model = build_model(imagenet_preprocessing.NUM_CLASSES, mode='resnet50_features', save_labels=True)

    load_path = GB_OPTIONS.pretrained_filepath
    if load_path is None:
      load_path = GB_OPTIONS.checkpoint_folder
    latest = tf.train.latest_checkpoint(load_path)
    print(latest)
    model.load_weights(latest)

    num_eval_steps = imagenet_preprocessing.NUM_IMAGES['validation'] // GB_OPTIONS.batch_size

    pred = model.predict(
      pred_input_dataset,
      batch_size = GB_OPTIONS.batch_size,
      steps = num_eval_steps
    )

    np.save(GB_OPTIONS.out_npys_folder+'out_X', pred[0])
    np.save(GB_OPTIONS.out_npys_folder+'out_labels', pred[1])
    np.save(GB_OPTIONS.out_npys_folder+'out_ori_labels', pred[2])

    return 'good'
Example #11
0
def run_train(flags_obj):
  keras_utils.set_session_config(
    enable_eager=flags_obj.enable_eager,
    enable_xla=flags_obj.enable_xla)

  # Execute flag override logic for better model performance
  if flags_obj.tf_gpu_thread_mode:
    keras_utils.set_gpu_thread_mode_and_count(
      per_gpu_thread_count=flags_obj.per_gpu_thread_count,
      gpu_thread_mode=flags_obj.tf_gpu_thread_mode,
      num_gpus=flags_obj.num_gpus,
      datasets_num_private_threads=flags_obj.datasets_num_private_threads)
  common.set_cudnn_batchnorm_mode()

  performance.set_mixed_precision_policy(
    flags_core.get_tf_dtype(flags_obj),
    flags_core.get_loss_scale(flags_obj, default_for_fp16=128))

  data_format = flags_obj.data_format
  if data_format is None:
    data_format = ('channels_first'
                   if tf.test.is_built_with_cuda() else 'channels_last')
  tf.keras.backend.set_image_data_format(data_format)

  # Configures cluster spec for distribution strategy.
  _ = distribution_utils.configure_cluster(flags_obj.worker_hosts,
                                           flags_obj.task_index)

  strategy = distribution_utils.get_distribution_strategy(
    distribution_strategy=flags_obj.distribution_strategy,
    num_gpus=flags_obj.num_gpus,
    all_reduce_alg=flags_obj.all_reduce_alg,
    num_packs=flags_obj.num_packs,
    tpu_address=flags_obj.tpu)

  if strategy:
  # flags_obj.enable_get_next_as_optional controls whether enabling
  # get_next_as_optional behavior in DistributedIterator. If true, last
  # partial batch can be supported.
    strategy.extended.experimental_enable_get_next_as_optional = (
      flags_obj.enable_get_next_as_optional
    )

  strategy_scope = distribution_utils.get_strategy_scope(strategy)

  distribution_utils.undo_set_up_synthetic_data()

  train_input_dataset, eval_input_dataset, tr_dataset, te_dataset = setup_datasets(flags_obj)

  lr_schedule = common.PiecewiseConstantDecayWithWarmup(
    batch_size=GB_OPTIONS.batch_size,
    epoch_size=imagenet_preprocessing.NUM_IMAGES['train'],
    warmup_epochs=common.LR_SCHEDULE[0][1],
    boundaries=list(p[1] for p in common.LR_SCHEDULE[1:]),
    multipliers=list(p[0] for p in common.LR_SCHEDULE),
    compute_lr_on_cpu=True)
  steps_per_epoch = (imagenet_preprocessing.NUM_IMAGES['train'] // GB_OPTIONS.batch_size)

  with strategy_scope:
    optimizer = common.get_optimizer(lr_schedule)
    model = build_model(imagenet_preprocessing.NUM_CLASSES, mode='resnet50')

    if GB_OPTIONS.pretrained_filepath is not None:
      latest = tf.train.latest_checkpoint(GB_OPTIONS.pretrained_filepath)
      print(latest)
      model.load_weights(latest)

    #losses = ["sparse_categorical_crossentropy"]
    #lossWeights = [1.0]
    model.compile(
      optimizer=optimizer,
      loss="sparse_categorical_crossentropy",
      #loss_weights=lossWeights,
      metrics=['sparse_categorical_accuracy'])

    train_epochs = GB_OPTIONS.num_epochs

    if not hasattr(tr_dataset, "n_poison"):
      n_poison=0
      n_cover=0
    else:
      n_poison = tr_dataset.n_poison
      n_cover = tr_dataset.n_cover

    callbacks = common.get_callbacks(
      steps_per_epoch=steps_per_epoch,
      pruning_method=flags_obj.pruning_method,
      enable_checkpoint_and_export=False,
      model_dir=GB_OPTIONS.checkpoint_folder
    )
    ckpt_full_path = os.path.join(GB_OPTIONS.checkpoint_folder, 'model.ckpt-{epoch:04d}-p%d-c%d'%(n_poison,n_cover))
    callbacks.append(tf.keras.callbacks.ModelCheckpoint(ckpt_full_path, save_weights_only=True, save_best_only=True))

    num_eval_steps = imagenet_preprocessing.NUM_IMAGES['validation'] // GB_OPTIONS.batch_size

    if flags_obj.skip_eval:
      # Only build the training graph. This reduces memory usage introduced by
      # control flow ops in layers that have different implementations for
      # training and inference (e.g., batch norm).
      if flags_obj.set_learning_phase_to_train:
        # TODO(haoyuzhang): Understand slowdown of setting learning phase when
        # not using distribution strategy.
        tf.keras.backend.set_learning_phase(1)
      num_eval_steps = None
      eval_input_dataset = None

    history = model.fit(
      train_input_dataset,
      epochs=train_epochs,
      steps_per_epoch=steps_per_epoch,
      callbacks=callbacks,
      validation_steps=num_eval_steps,
      validation_data=eval_input_dataset,
      validation_freq=flags_obj.epochs_between_evals
    )

    export_path = os.path.join(GB_OPTIONS.checkpoint_folder, 'saved_model')
    model.save(export_path, include_optimizer=False)

    eval_output = model.evaluate(
      eval_input_dataset, steps=num_eval_steps, verbose=2
    )

    stats = common.build_stats(history, eval_output, callbacks)

    cmmd = 'cp config.py '+GB_OPTIONS.checkpoint_folder
    os.system(cmmd)

    return stats
def run(flags_obj):
  """Run ResNet ImageNet training and eval loop using native Keras APIs.

  Args:
    flags_obj: An object containing parsed flag values.

  Raises:
    ValueError: If fp16 is passed as it is not currently supported.

  Returns:
    Dictionary of training and eval stats.
  """
  keras_utils.set_session_config(
      enable_eager=flags_obj.enable_eager,
      enable_xla=flags_obj.enable_xla)

  # Execute flag override logic for better model performance
  if flags_obj.tf_gpu_thread_mode:
    keras_utils.set_gpu_thread_mode_and_count(
        per_gpu_thread_count=flags_obj.per_gpu_thread_count,
        gpu_thread_mode=flags_obj.tf_gpu_thread_mode,
        num_gpus=flags_obj.num_gpus,
        datasets_num_private_threads=flags_obj.datasets_num_private_threads)
  common.set_cudnn_batchnorm_mode()

  dtype = flags_core.get_tf_dtype(flags_obj)
  if dtype == tf.float16:
    loss_scale = flags_core.get_loss_scale(flags_obj, default_for_fp16=128)
    policy = tf.compat.v2.keras.mixed_precision.experimental.Policy(
        'mixed_float16', loss_scale=loss_scale)
    tf.compat.v2.keras.mixed_precision.experimental.set_policy(policy)
    if not keras_utils.is_v2_0():
      raise ValueError('--dtype=fp16 is not supported in TensorFlow 1.')
  elif dtype == tf.bfloat16:
    policy = tf.compat.v2.keras.mixed_precision.experimental.Policy(
        'mixed_bfloat16')
    tf.compat.v2.keras.mixed_precision.experimental.set_policy(policy)

  data_format = flags_obj.data_format
  if data_format is None:
    data_format = ('channels_first'
                   if tf.test.is_built_with_cuda() else 'channels_last')
  tf.keras.backend.set_image_data_format(data_format)

  # Configures cluster spec for distribution strategy.
  num_workers = distribution_utils.configure_cluster(flags_obj.worker_hosts,
                                                     flags_obj.task_index)

  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=flags_obj.distribution_strategy,
      num_gpus=flags_obj.num_gpus,
      num_workers=num_workers,
      all_reduce_alg=flags_obj.all_reduce_alg,
      num_packs=flags_obj.num_packs,
      tpu_address=flags_obj.tpu)

  if strategy:
    # flags_obj.enable_get_next_as_optional controls whether enabling
    # get_next_as_optional behavior in DistributedIterator. If true, last
    # partial batch can be supported.
    strategy.extended.experimental_enable_get_next_as_optional = (
        flags_obj.enable_get_next_as_optional
    )

  strategy_scope = distribution_utils.get_strategy_scope(strategy)

  # pylint: disable=protected-access
  if flags_obj.use_synthetic_data:
    distribution_utils.set_up_synthetic_data()
    input_fn = common.get_synth_input_fn(
        height=imagenet_preprocessing.DEFAULT_IMAGE_SIZE,
        width=imagenet_preprocessing.DEFAULT_IMAGE_SIZE,
        num_channels=imagenet_preprocessing.NUM_CHANNELS,
        num_classes=imagenet_preprocessing.NUM_CLASSES,
        dtype=dtype,
        drop_remainder=True)
  else:
    distribution_utils.undo_set_up_synthetic_data()
    input_fn = imagenet_preprocessing.input_fn

  # When `enable_xla` is True, we always drop the remainder of the batches
  # in the dataset, as XLA-GPU doesn't support dynamic shapes.
  drop_remainder = flags_obj.enable_xla

  train_input_dataset = input_fn(
      is_training=True,
      data_dir=flags_obj.data_dir,
      batch_size=flags_obj.batch_size,
      num_epochs=flags_obj.train_epochs,
      parse_record_fn=imagenet_preprocessing.parse_record,
      datasets_num_private_threads=flags_obj.datasets_num_private_threads,
      dtype=dtype,
      drop_remainder=drop_remainder,
      tf_data_experimental_slack=flags_obj.tf_data_experimental_slack,
      training_dataset_cache=flags_obj.training_dataset_cache,
  )

  eval_input_dataset = None
  if not flags_obj.skip_eval:
    eval_input_dataset = input_fn(
        is_training=False,
        data_dir=flags_obj.data_dir,
        batch_size=flags_obj.batch_size,
        num_epochs=flags_obj.train_epochs,
        parse_record_fn=imagenet_preprocessing.parse_record,
        dtype=dtype,
        drop_remainder=drop_remainder)

  lr_schedule = 0.1
  if flags_obj.use_tensor_lr:
    lr_schedule = common.PiecewiseConstantDecayWithWarmup(
        batch_size=flags_obj.batch_size,
        epoch_size=imagenet_preprocessing.NUM_IMAGES['train'],
        warmup_epochs=common.LR_SCHEDULE[0][1],
        boundaries=list(p[1] for p in common.LR_SCHEDULE[1:]),
        multipliers=list(p[0] for p in common.LR_SCHEDULE),
        compute_lr_on_cpu=True)

  with strategy_scope:
    optimizer = common.get_optimizer(lr_schedule)
    if flags_obj.fp16_implementation == 'graph_rewrite':
      # Note: when flags_obj.fp16_implementation == "graph_rewrite", dtype as
      # determined by flags_core.get_tf_dtype(flags_obj) would be 'float32'
      # which will ensure tf.compat.v2.keras.mixed_precision and
      # tf.train.experimental.enable_mixed_precision_graph_rewrite do not double
      # up.
      optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite(
          optimizer)

    # TODO(hongkuny): Remove trivial model usage and move it to benchmark.
    if flags_obj.use_trivial_model:
      model = trivial_model.trivial_model(
          imagenet_preprocessing.NUM_CLASSES)
    else:
      model = resnet_model.resnet50(
          num_classes=imagenet_preprocessing.NUM_CLASSES)

    # TODO(b/138957587): Remove when force_v2_in_keras_compile is on longer
    # a valid arg for this model. Also remove as a valid flag.
    if flags_obj.force_v2_in_keras_compile is not None:
      model.compile(
          loss='sparse_categorical_crossentropy',
          optimizer=optimizer,
          metrics=(['sparse_categorical_accuracy']
                   if flags_obj.report_accuracy_metrics else None),
          run_eagerly=flags_obj.run_eagerly,
          experimental_run_tf_function=flags_obj.force_v2_in_keras_compile)
    else:
      model.compile(
          loss='sparse_categorical_crossentropy',
          optimizer=optimizer,
          metrics=(['sparse_categorical_accuracy']
                   if flags_obj.report_accuracy_metrics else None),
          run_eagerly=flags_obj.run_eagerly)

  steps_per_epoch = (
      imagenet_preprocessing.NUM_IMAGES['train'] // flags_obj.batch_size)
  train_epochs = flags_obj.train_epochs

  callbacks = common.get_callbacks(steps_per_epoch,
                                   common.learning_rate_schedule)
  if flags_obj.enable_checkpoint_and_export:
    ckpt_full_path = os.path.join(flags_obj.model_dir, 'model.ckpt-{epoch:04d}')
    callbacks.append(tf.keras.callbacks.ModelCheckpoint(ckpt_full_path,
                                                        save_weights_only=True))

  # if mutliple epochs, ignore the train_steps flag.
  if train_epochs <= 1 and flags_obj.train_steps:
    steps_per_epoch = min(flags_obj.train_steps, steps_per_epoch)
    train_epochs = 1

  num_eval_steps = (
      imagenet_preprocessing.NUM_IMAGES['validation'] // flags_obj.batch_size)

  validation_data = eval_input_dataset
  if flags_obj.skip_eval:
    # Only build the training graph. This reduces memory usage introduced by
    # control flow ops in layers that have different implementations for
    # training and inference (e.g., batch norm).
    if flags_obj.set_learning_phase_to_train:
      # TODO(haoyuzhang): Understand slowdown of setting learning phase when
      # not using distribution strategy.
      tf.keras.backend.set_learning_phase(1)
    num_eval_steps = None
    validation_data = None

  if not strategy and flags_obj.explicit_gpu_placement:
    # TODO(b/135607227): Add device scope automatically in Keras training loop
    # when not using distribition strategy.
    no_dist_strat_device = tf.device('/device:GPU:0')
    no_dist_strat_device.__enter__()

  history = model.fit(train_input_dataset,
                      epochs=train_epochs,
                      steps_per_epoch=steps_per_epoch,
                      callbacks=callbacks,
                      validation_steps=num_eval_steps,
                      validation_data=validation_data,
                      validation_freq=flags_obj.epochs_between_evals,
                      verbose=2)
  if flags_obj.enable_checkpoint_and_export:
    if dtype == tf.bfloat16:
      logging.warning("Keras model.save does not support bfloat16 dtype.")
    else:
      # Keras model.save assumes a float32 input designature.
      export_path = os.path.join(flags_obj.model_dir, 'saved_model')
      model.save(export_path, include_optimizer=False)

  eval_output = None
  if not flags_obj.skip_eval:
    eval_output = model.evaluate(eval_input_dataset,
                                 steps=num_eval_steps,
                                 verbose=2)

  if not strategy and flags_obj.explicit_gpu_placement:
    no_dist_strat_device.__exit__()

  stats = common.build_stats(history, eval_output, callbacks)
  return stats
Example #13
0
def run(flags_obj):
    """Run ResNet ImageNet training and eval loop using native Keras APIs.

    Args:
        flags_obj: An object containing parsed flag values.

    Raises:
        ValueError: If fp16 is passed as it is not currently supported.

    Returns:
        Dictionary of training and eval stats.
    """
    keras_utils.set_session_config(enable_eager=flags_obj.enable_eager,
                                   enable_xla=flags_obj.enable_xla)

    # Execute flag override logic for better model performance
    if flags_obj.tf_gpu_thread_mode:
        keras_utils.set_gpu_thread_mode_and_count(
            per_gpu_thread_count=flags_obj.per_gpu_thread_count,
            gpu_thread_mode=flags_obj.tf_gpu_thread_mode,
            num_gpus=flags_obj.num_gpus,
            datasets_num_private_threads=flags_obj.datasets_num_private_threads
        )
    common.set_cudnn_batchnorm_mode()

    dtype = flags_core.get_tf_dtype(flags_obj)
    if dtype == tf.float16:
        loss_scale = flags_core.get_loss_scale(flags_obj, default_for_fp16=128)
        policy = tf.compat.v2.keras.mixed_precision.experimental.Policy(
            'mixed_float16', loss_scale=loss_scale)
        tf.compat.v2.keras.mixed_precision.experimental.set_policy(policy)
        if not keras_utils.is_v2_0():
            raise ValueError('--dtype=fp16 is not supported in TensorFlow 1.')
    elif dtype == tf.bfloat16:
        policy = tf.compat.v2.keras.mixed_precision.experimental.Policy(
            'mixed_bfloat16')
        tf.compat.v2.keras.mixed_precision.experimental.set_policy(policy)

    data_format = flags_obj.data_format
    if data_format is None:
        data_format = ('channels_first'
                       if tf.test.is_built_with_cuda() else 'channels_last')
    tf.keras.backend.set_image_data_format(data_format)

    preprocessing_seed = 12345

    # pylint: disable=protected-access
    if flags_obj.use_synthetic_data:
        distribution_utils.set_up_synthetic_data()
        input_fn = common.get_synth_input_fn(
            height=imagenet_preprocessing.DEFAULT_IMAGE_SIZE,
            width=imagenet_preprocessing.DEFAULT_IMAGE_SIZE,
            num_channels=imagenet_preprocessing.NUM_CHANNELS,
            num_classes=imagenet_preprocessing.NUM_CLASSES,
            dtype=dtype,
            drop_remainder=True)
    else:
        distribution_utils.undo_set_up_synthetic_data()
        input_fn = imagenet_preprocessing.input_fn

    # When `enable_xla` is True, we always drop the remainder of the batches
    # in the dataset, as XLA-GPU doesn't support dynamic shapes.
    drop_remainder = flags_obj.enable_xla

    train_input_dataset = input_fn(
        is_training=True,
        data_dir=flags_obj.data_dir,
        batch_size=flags_obj.batch_size,
        num_epochs=flags_obj.train_epochs,
        parse_record_fn=imagenet_preprocessing.parse_record,
        datasets_num_private_threads=flags_obj.datasets_num_private_threads,
        dtype=dtype,
        drop_remainder=drop_remainder,
        random_seed=preprocessing_seed,  #addition
        num_workers=current_cluster_size(),  #addition
        worker_ID=current_rank(),  #addition
        tf_data_experimental_slack=flags_obj.tf_data_experimental_slack,
        training_dataset_cache=flags_obj.training_dataset_cache,
    )

    eval_input_dataset = None
    if not flags_obj.skip_eval:
        eval_input_dataset = input_fn(
            is_training=False,
            data_dir=flags_obj.data_dir,
            batch_size=flags_obj.batch_size,
            num_epochs=flags_obj.train_epochs,
            parse_record_fn=imagenet_preprocessing.parse_record,
            dtype=dtype,
            drop_remainder=drop_remainder)

    lr_schedule = 0.1
    if flags_obj.use_tensor_lr:
        lr_schedule = common.PiecewiseConstantDecayWithWarmup(
            batch_size=flags_obj.batch_size,
            epoch_size=imagenet_preprocessing.NUM_IMAGES['train'],
            warmup_epochs=common.LR_SCHEDULE[0][1],
            boundaries=list(p[1] for p in common.LR_SCHEDULE[1:]),
            multipliers=list(p[0] for p in common.LR_SCHEDULE),
            compute_lr_on_cpu=True)

    # Build KungFu optimizer
    opt = common.get_optimizer(lr_schedule)
    # logging.info(opt.__dict__)
    optimizer = SynchronousSGDOptimizer(opt, reshape=False, use_locking=True)
    optimizer._hyper = opt._hyper
    # logging.info(optimizer.__dict__)

    if flags_obj.fp16_implementation == 'graph_rewrite':
        # Note: when flags_obj.fp16_implementation == "graph_rewrite", dtype as
        # determined by flags_core.get_tf_dtype(flags_obj) would be 'float32'
        # which will ensure tf.compat.v2.keras.mixed_precision and
        # tf.train.experimental.enable_mixed_precision_graph_rewrite do not double
        # up.
        optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite(
            optimizer)

    # TODO(hongkuny): Remove trivial model usage and move it to benchmark.
    if flags_obj.use_trivial_model:
        model = trivial_model.trivial_model(imagenet_preprocessing.NUM_CLASSES)
    else:
        model = resnet_model.resnet50(
            num_classes=imagenet_preprocessing.NUM_CLASSES)

    # TODO(b/138957587): Remove when force_v2_in_keras_compile is on longer
    # a valid arg for this model. Also remove as a valid flag.

    metrics = (['sparse_categorical_accuracy'])
    metrics.append('sparse_top_k_categorical_accuracy')

    if flags_obj.force_v2_in_keras_compile is not None:
        model.compile(
            loss='sparse_categorical_crossentropy',
            optimizer=optimizer,
            metrics=metrics,
            run_eagerly=flags_obj.run_eagerly,
            experimental_run_tf_function=flags_obj.force_v2_in_keras_compile)
    else:
        model.compile(loss='sparse_categorical_crossentropy',
                      optimizer=optimizer,
                      metrics=metrics,
                      run_eagerly=flags_obj.run_eagerly)

    # adjust number of steps
    cluster_size = current_cluster_size()
    steps_per_epoch = (imagenet_preprocessing.NUM_IMAGES['train'] //
                       flags_obj.batch_size)
    steps_per_epoch = steps_per_epoch // cluster_size

    train_epochs = flags_obj.train_epochs
    callbacks = common.get_callbacks(steps_per_epoch, current_rank(),
                                     cluster_size,
                                     common.learning_rate_schedule)

    # Broadcast variables for KungFu
    callbacks.append(BroadcastGlobalVariablesCallback())

    # Checkpoint callback only on worker 0
    if flags_obj.enable_checkpoint_and_export and current_rank() == 0:
        ckpt_full_path = os.path.join(flags_obj.model_dir,
                                      'model.ckpt-{epoch:04d}')
        callbacks.append(
            tf.keras.callbacks.ModelCheckpoint(ckpt_full_path,
                                               save_weights_only=True))

    if flags_obj.train_steps:
        steps_per_epoch = min(flags_obj.train_steps, steps_per_epoch)

    num_eval_steps = (imagenet_preprocessing.NUM_IMAGES['validation'] //
                      flags_obj.batch_size)

    validation_data = eval_input_dataset
    if flags_obj.skip_eval:
        # Only build the training graph. This reduces memory usage introduced by
        # control flow ops in layers that have different implementations for
        # training and inference (e.g., batch norm).
        if flags_obj.set_learning_phase_to_train:
            # TODO(haoyuzhang): Understand slowdown of setting learning phase when
            # not using distribution strategy.
            tf.keras.backend.set_learning_phase(1)
            num_eval_steps = None
            validation_data = None

    history = model.fit(train_input_dataset,
                        epochs=train_epochs,
                        steps_per_epoch=steps_per_epoch,
                        callbacks=callbacks,
                        validation_steps=num_eval_steps,
                        validation_data=validation_data,
                        validation_freq=flags_obj.epochs_between_evals,
                        verbose=2)

    # Checkpoint only on 0th worker
    if flags_obj.enable_checkpoint_and_export and current_rank() == 0:
        if dtype == tf.bfloat16:
            logging.warning(
                "Keras model.save does not support bfloat16 dtype.")
        else:
            # Keras model.save assumes a float32 input designature.
            export_path = os.path.join(flags_obj.model_dir, 'saved_model')
            model.save(export_path, include_optimizer=False)

    eval_output = None
    if not flags_obj.skip_eval:
        eval_output = model.evaluate(eval_input_dataset,
                                     steps=num_eval_steps,
                                     verbose=2)

    stats = common.build_stats(history, eval_output, callbacks)
    return stats
Example #14
0
def run(flags_obj):
    """Run ResNet Cifar-10 training and eval loop using native Keras APIs.

  Args:
    flags_obj: An object containing parsed flag values.

  Raises:
    ValueError: If fp16 is passed as it is not currently supported.

  Returns:
    Dictionary of training and eval stats.
  """
    keras_utils.set_session_config(enable_eager=flags_obj.enable_eager,
                                   enable_xla=flags_obj.enable_xla)

    # Execute flag override logic for better model performance
    if flags_obj.tf_gpu_thread_mode:
        keras_utils.set_gpu_thread_mode_and_count(
            per_gpu_thread_count=flags_obj.per_gpu_thread_count,
            gpu_thread_mode=flags_obj.tf_gpu_thread_mode,
            num_gpus=flags_obj.num_gpus,
            datasets_num_private_threads=flags_obj.datasets_num_private_threads
        )
    common.set_cudnn_batchnorm_mode()

    dtype = flags_core.get_tf_dtype(flags_obj)
    if dtype == 'fp16':
        raise ValueError(
            'dtype fp16 is not supported in Keras. Use the default '
            'value(fp32).')

    data_format = flags_obj.data_format
    if data_format is None:
        data_format = ('channels_first'
                       if tf.test.is_built_with_cuda() else 'channels_last')
    tf.keras.backend.set_image_data_format(data_format)

    strategy = distribution_utils.get_distribution_strategy(
        distribution_strategy=flags_obj.distribution_strategy,
        num_gpus=flags_obj.num_gpus,
        num_workers=distribution_utils.configure_cluster(),
        all_reduce_alg=flags_obj.all_reduce_alg,
        num_packs=flags_obj.num_packs)

    if strategy:
        # flags_obj.enable_get_next_as_optional controls whether enabling
        # get_next_as_optional behavior in DistributedIterator. If true, last
        # partial batch can be supported.
        strategy.extended.experimental_enable_get_next_as_optional = (
            flags_obj.enable_get_next_as_optional)

    strategy_scope = distribution_utils.get_strategy_scope(strategy)

    if flags_obj.use_synthetic_data:
        distribution_utils.set_up_synthetic_data()
        input_fn = common.get_synth_input_fn(
            height=cifar_preprocessing.HEIGHT,
            width=cifar_preprocessing.WIDTH,
            num_channels=cifar_preprocessing.NUM_CHANNELS,
            num_classes=cifar_preprocessing.NUM_CLASSES,
            dtype=flags_core.get_tf_dtype(flags_obj),
            drop_remainder=True)
    else:
        distribution_utils.undo_set_up_synthetic_data()
        input_fn = cifar_preprocessing.input_fn

    #train_input_dataset = input_fn(
    #    is_training=True,
    #    data_dir=flags_obj.data_dir,
    #    batch_size=flags_obj.batch_size,
    #    num_epochs=flags_obj.train_epochs,
    #    parse_record_fn=cifar_preprocessing.parse_record,
    #    datasets_num_private_threads=flags_obj.datasets_num_private_threads,
    #    dtype=dtype,
    #    # Setting drop_remainder to avoid the partial batch logic in normalization
    #    # layer, which triggers tf.where and leads to extra memory copy of input
    #    # sizes between host and GPU.
    #    drop_remainder=(not flags_obj.enable_get_next_as_optional))

    # eval_input_dataset = None
    # if not flags_obj.skip_eval:
    #   eval_input_dataset = input_fn(
    #       is_training=False,
    #       data_dir=flags_obj.data_dir,
    #       batch_size=flags_obj.batch_size,
    #       num_epochs=flags_obj.train_epochs,
    #       parse_record_fn=cifar_preprocessing.parse_record)

    (x_train, y_train), (x_test,
                         y_test) = tf.keras.datasets.cifar10.load_data()
    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    x_train /= 255
    x_test /= 255
    y_train = tf.keras.utils.to_categorical(y_train, num_classes)
    y_test = tf.keras.utils.to_categorical(y_test, num_classes)

    # optimizer = common.get_optimizer()

    opt = tf.keras.optimizers.SGD(learning_rate=0.1)

    logging.info(opt.__dict__)
    optimizer = SynchronousSGDOptimizer(opt, use_locking=True)
    optimizer._hyper = opt._hyper

    logging.info(optimizer.__dict__)

    model = Conv4_model(x_train, num_classes)

    # TODO(b/138957587): Remove when force_v2_in_keras_compile is on longer
    # a valid arg for this model. Also remove as a valid flag.
    if flags_obj.force_v2_in_keras_compile is not None:
        model.compile(
            loss='categorical_crossentropy',
            optimizer=optimizer,
            metrics=(['accuracy']),
            run_eagerly=flags_obj.run_eagerly,
            experimental_run_tf_function=flags_obj.force_v2_in_keras_compile)
    else:
        model.compile(loss='categorical_crossentropy',
                      optimizer=optimizer,
                      metrics=(['accuracy']),
                      run_eagerly=flags_obj.run_eagerly)

    cluster_size = current_cluster_size()
    steps_per_epoch = (cifar_preprocessing.NUM_IMAGES['train'] //
                       flags_obj.batch_size)
    steps_per_epoch = steps_per_epoch // cluster_size
    train_epochs = flags_obj.train_epochs

    callbacks = common.get_callbacks(steps_per_epoch, current_rank(),
                                     cluster_size, learning_rate_schedule)
    callbacks.append(BroadcastGlobalVariablesCallback())

    if flags_obj.train_steps:
        steps_per_epoch = min(flags_obj.train_steps, steps_per_epoch)

    num_eval_steps = (cifar_preprocessing.NUM_IMAGES['validation'] //
                      flags_obj.batch_size)

    # validation_data = eval_input_dataset
    if flags_obj.skip_eval:
        if flags_obj.set_learning_phase_to_train:
            # TODO(haoyuzhang): Understand slowdown of setting learning phase when
            # not using distribution strategy.
            tf.keras.backend.set_learning_phase(1)
        num_eval_steps = None
        validation_data = None

    tf.compat.v1.logging.info(x_train.shape)
    history = model.fit(x_train,
                        y_train,
                        batch_size=flags_obj.batch_size,
                        epochs=train_epochs,
                        steps_per_epoch=steps_per_epoch,
                        callbacks=callbacks,
                        validation_steps=num_eval_steps,
                        validation_data=(x_test, y_test),
                        validation_freq=flags_obj.epochs_between_evals,
                        verbose=2)
    eval_output = None
    if not flags_obj.skip_eval:
        eval_output = model.evaluate((x_test, y_test),
                                     steps=num_eval_steps,
                                     verbose=2)
    stats = common.build_stats(history, eval_output, callbacks)
    return stats