def test_revnet_creation(self, model_id): """Test creation of RevNet models.""" network = backbones.RevNet(model_id=model_id, norm_momentum=0.99, norm_epsilon=1e-5) backbone_config = backbones_cfg.Backbone( type='revnet', revnet=backbones_cfg.RevNet(model_id=model_id)) norm_activation_config = common_cfg.NormActivation(norm_momentum=0.99, norm_epsilon=1e-5, use_sync_bn=False) factory_network = factory.build_backbone( input_specs=tf.keras.layers.InputSpec(shape=[None, None, None, 3]), backbone_config=backbone_config, norm_activation_config=norm_activation_config) network_config = network.get_config() factory_network_config = factory_network.get_config() self.assertEqual(network_config, factory_network_config)
def image_classification_imagenet_revnet() -> cfg.ExperimentConfig: """Returns a revnet config for image classification on imagenet.""" train_batch_size = 4096 eval_batch_size = 4096 steps_per_epoch = IMAGENET_TRAIN_EXAMPLES // train_batch_size config = cfg.ExperimentConfig( task=ImageClassificationTask( model=ImageClassificationModel( num_classes=1001, input_size=[224, 224, 3], backbone=backbones.Backbone( type='revnet', revnet=backbones.RevNet(model_id=56)), norm_activation=common.NormActivation(norm_momentum=0.9, norm_epsilon=1e-5, use_sync_bn=False), add_head_batch_norm=True), losses=Losses(l2_weight_decay=1e-4), train_data=DataConfig(input_path=os.path.join( IMAGENET_INPUT_PATH_BASE, 'train*'), is_training=True, global_batch_size=train_batch_size), validation_data=DataConfig(input_path=os.path.join( IMAGENET_INPUT_PATH_BASE, 'valid*'), is_training=False, global_batch_size=eval_batch_size)), trainer=cfg.TrainerConfig( steps_per_loop=steps_per_epoch, summary_interval=steps_per_epoch, checkpoint_interval=steps_per_epoch, train_steps=90 * steps_per_epoch, validation_steps=IMAGENET_VAL_EXAMPLES // eval_batch_size, validation_interval=steps_per_epoch, optimizer_config=optimization.OptimizationConfig({ 'optimizer': { 'type': 'sgd', 'sgd': { 'momentum': 0.9 } }, 'learning_rate': { 'type': 'stepwise', 'stepwise': { 'boundaries': [ 30 * steps_per_epoch, 60 * steps_per_epoch, 80 * steps_per_epoch ], 'values': [0.8, 0.08, 0.008, 0.0008] } }, 'warmup': { 'type': 'linear', 'linear': { 'warmup_steps': 5 * steps_per_epoch, 'warmup_learning_rate': 0 } } })), restrictions=[ 'task.train_data.is_training != None', 'task.validation_data.is_training != None' ]) return config