def testAffineWarpBoxes(self, affine, num_boxes):
     boxes = tf.convert_to_tensor(np.random.rand(num_boxes, 4))
     boxes = bbox_ops.denormalize_boxes(boxes, affine[0])
     processed_boxes, _ = preprocessing_ops.affine_warp_boxes(
         tf.cast(affine[2], tf.double), boxes, affine[1], box_history=boxes)
     processed_boxes_shape = tf.shape(processed_boxes)
     self.assertAllEqual([num_boxes, 4], processed_boxes_shape.numpy())
Example #2
0
def reverse_input_box_transformation(boxes, image_info):
    """Reverse the Mask R-CNN model's input boxes tranformation.

  Args:
    boxes: A [batch_size, num_boxes, 4] float tensor of boxes in normalized
      coordinates.
    image_info: a 2D `Tensor` that encodes the information of the image and the
      applied preprocessing. It is in the format of
      [[original_height, original_width], [desired_height, desired_width],
       [y_scale, x_scale], [y_offset, x_offset]], where [desired_height,
      desired_width] is the actual scaled image size, and [y_scale, x_scale] is
      the scaling factor, which is the ratio of
      scaled dimension / original dimension.

  Returns:
    boxes: Same shape as input `boxes` but in the absolute coordinate space of
      the preprocessed image.
  """
    # Reversing sequence from Detection_module.serve when
    # output_normalized_coordinates=true
    scale = image_info[:, 2:3, :]
    scale = tf.tile(scale, [1, 1, 2])
    boxes = boxes * scale
    height_width = image_info[:, 0:1, :]
    return box_ops.denormalize_boxes(boxes, height_width)
Example #3
0
    def _mosaic_crop_image(self, image, boxes, classes, is_crowd, area):
        """Process a patched image in preperation for final output."""
        if self._mosaic_crop_mode != 'crop':
            shape = tf.cast(preprocessing_ops.get_image_shape(image),
                            tf.float32)
            center = shape * self._mosaic_center

            # shift the center of the image by applying a translation to the whole
            # image
            ch = tf.math.round(
                preprocessing_ops.random_uniform_strong(-center[0],
                                                        center[0],
                                                        seed=self._seed))
            cw = tf.math.round(
                preprocessing_ops.random_uniform_strong(-center[1],
                                                        center[1],
                                                        seed=self._seed))

            # clip the boxes to those with in the image
            image = tfa.image.translate(image, [cw, ch],
                                        fill_value=self._pad_value)
            boxes = box_ops.denormalize_boxes(boxes, shape[:2])
            boxes = boxes + tf.cast([ch, cw, ch, cw], boxes.dtype)
            boxes = box_ops.clip_boxes(boxes, shape[:2])
            inds = box_ops.get_non_empty_box_indices(boxes)

            boxes = box_ops.normalize_boxes(boxes, shape[:2])
            boxes, classes, is_crowd, area = self._select_ind(
                inds,
                boxes,
                classes,  # pylint:disable=unbalanced-tuple-unpacking
                is_crowd,
                area)

        # warp and scale the fully stitched sample
        image, _, affine = preprocessing_ops.affine_warp_image(
            image, [self._output_size[0], self._output_size[1]],
            scale_min=self._aug_scale_min,
            scale_max=self._aug_scale_max,
            translate=self._aug_rand_translate,
            degrees=self._aug_rand_angle,
            perspective=self._aug_rand_perspective,
            random_pad=self._random_pad,
            seed=self._seed)
        height, width = self._output_size[0], self._output_size[1]
        image = tf.image.resize(image, (height, width))

        # clip and clean boxes
        boxes, inds = preprocessing_ops.transform_and_clip_boxes(
            boxes,
            None,
            affine=affine,
            area_thresh=self._area_thresh,
            seed=self._seed)
        classes, is_crowd, area = self._select_ind(inds, classes, is_crowd,
                                                   area)  # pylint:disable=unbalanced-tuple-unpacking
        return image, boxes, classes, is_crowd, area, area
Example #4
0
    def _parse_eval_data(self, data):
        """Parses data for training and evaluation."""
        classes = data['groundtruth_classes']
        boxes = data['groundtruth_boxes']
        is_crowd = data['groundtruth_is_crowd']

        # Gets original image and its size.
        image = data['image']

        # Normalizes image with mean and std pixel values.
        image = preprocess_ops.normalize_image(image)

        scales = tf.constant([self._resize_scales[-1]], tf.float32)

        image_shape = tf.shape(image)[:2]
        boxes = box_ops.denormalize_boxes(boxes, image_shape)
        gt_boxes = boxes
        short_side = scales[0]
        image, image_info = preprocess_ops.resize_image(
            image, short_side, max(self._output_size))
        boxes = preprocess_ops.resize_and_crop_boxes(boxes, image_info[2, :],
                                                     image_info[1, :],
                                                     image_info[3, :])
        boxes = box_ops.normalize_boxes(boxes, image_info[1, :])

        # Filters out ground truth boxes that are all zeros.
        indices = box_ops.get_non_empty_box_indices(boxes)
        boxes = tf.gather(boxes, indices)
        classes = tf.gather(classes, indices)
        is_crowd = tf.gather(is_crowd, indices)
        boxes = box_ops.yxyx_to_cycxhw(boxes)

        image = tf.image.pad_to_bounding_box(image, 0, 0, self._output_size[0],
                                             self._output_size[1])
        labels = {
            'classes':
            preprocess_ops.clip_or_pad_to_fixed_size(classes,
                                                     self._max_num_boxes),
            'boxes':
            preprocess_ops.clip_or_pad_to_fixed_size(boxes,
                                                     self._max_num_boxes)
        }
        labels.update({
            'id':
            int(data['source_id']),
            'image_info':
            image_info,
            'is_crowd':
            preprocess_ops.clip_or_pad_to_fixed_size(is_crowd,
                                                     self._max_num_boxes),
            'gt_boxes':
            preprocess_ops.clip_or_pad_to_fixed_size(gt_boxes,
                                                     self._max_num_boxes),
        })

        return image, labels
Example #5
0
    def _parse_eval_data(self, data):
        """Generates images and labels that are usable for model evaluation.

    Args:
      data: the decoded tensor dictionary from TfExampleDecoder.

    Returns:
      images: the image tensor.
      labels: a dict of Tensors that contains labels.
    """
        image = tf.cast(data['image'], dtype=tf.float32)
        boxes = data['groundtruth_boxes']
        classes = data['groundtruth_classes']

        image_shape = tf.shape(input=image)[0:2]
        # Converts boxes from normalized coordinates to pixel coordinates.
        boxes = box_ops.denormalize_boxes(boxes, image_shape)

        # Resizes and crops image.
        image, image_info = preprocess_ops.resize_and_crop_image(
            image, [self._output_height, self._output_width],
            padded_size=[self._output_height, self._output_width],
            aug_scale_min=1.0,
            aug_scale_max=1.0)
        unpad_image_shape = tf.cast(tf.shape(image), tf.float32)

        # Resizes and crops boxes.
        image_scale = image_info[2, :]
        offset = image_info[3, :]
        boxes = preprocess_ops.resize_and_crop_boxes(boxes, image_scale,
                                                     image_info[1, :], offset)

        # Filters out ground truth boxes that are all zeros.
        indices = box_ops.get_non_empty_box_indices(boxes)
        boxes = tf.gather(boxes, indices)
        classes = tf.gather(classes, indices)

        labels = self._build_label(unpad_image_shape=unpad_image_shape,
                                   boxes=boxes,
                                   classes=classes,
                                   image_info=image_info,
                                   data=data)

        if self._bgr_ordering:
            red, green, blue = tf.unstack(image, num=3, axis=2)
            image = tf.stack([blue, green, red], axis=2)

        image = preprocess_ops.normalize_image(image=image,
                                               offset=self._channel_means,
                                               scale=self._channel_stds)

        image = tf.cast(image, self._dtype)

        return image, labels
 def testBoxCandidates(self, output_size, boxes):
     boxes = tf.cast(bbox_ops.denormalize_boxes(boxes, output_size),
                     tf.double)
     clipped_ind = preprocessing_ops.boxes_candidates(boxes,
                                                      boxes,
                                                      ar_thr=1e32,
                                                      wh_thr=0,
                                                      area_thr=tf.cast(
                                                          0, tf.double))
     clipped_ind_shape = tf.shape(clipped_ind)
     self.assertAllEqual([3], clipped_ind_shape.numpy())
     self.assertAllEqual([0, 1, 2], clipped_ind.numpy())
Example #7
0
    def _parse_single_example(self, example):
        """Parses a single serialized tf.Example proto.

    Args:
      example: a serialized tf.Example proto string.

    Returns:
      A dictionary of groundtruth with the following fields:
        source_id: a scalar tensor of int64 representing the image source_id.
        height: a scalar tensor of int64 representing the image height.
        width: a scalar tensor of int64 representing the image width.
        boxes: a float tensor of shape [K, 4], representing the groundtruth
          boxes in absolute coordinates with respect to the original image size.
        classes: a int64 tensor of shape [K], representing the class labels of
          each instances.
        is_crowds: a bool tensor of shape [K], indicating whether the instance
          is crowd.
        areas: a float tensor of shape [K], indicating the area of each
          instance.
        masks: a string tensor of shape [K], containing the bytes of the png
          mask of each instance.
    """
        decoder = tf_example_decoder.TfExampleDecoder(
            include_mask=self._include_mask,
            regenerate_source_id=self._regenerate_source_id)
        decoded_tensors = decoder.decode(example)

        image = decoded_tensors['image']
        image_size = tf.shape(image)[0:2]
        boxes = box_ops.denormalize_boxes(decoded_tensors['groundtruth_boxes'],
                                          image_size)

        source_id = decoded_tensors['source_id']
        if source_id.dtype is tf.string:
            source_id = tf.strings.to_number(source_id, out_type=tf.int64)

        groundtruths = {
            'source_id': source_id,
            'height': decoded_tensors['height'],
            'width': decoded_tensors['width'],
            'num_detections':
            tf.shape(decoded_tensors['groundtruth_classes'])[0],
            'boxes': boxes,
            'classes': decoded_tensors['groundtruth_classes'],
            'is_crowds': decoded_tensors['groundtruth_is_crowd'],
            'areas': decoded_tensors['groundtruth_area'],
        }
        if self._include_mask:
            groundtruths.update({
                'masks':
                decoded_tensors['groundtruth_instance_masks_png'],
            })
        return groundtruths
Example #8
0
    def scale_boxes(self, patch, ishape, boxes, classes, xs, ys):
        """Scale and translate the boxes for each image prior to patching."""
        xs = tf.cast(xs, boxes.dtype)
        ys = tf.cast(ys, boxes.dtype)
        pshape = tf.cast(tf.shape(patch), boxes.dtype)
        ishape = tf.cast(ishape, boxes.dtype)
        translate = tf.cast((ishape - pshape), boxes.dtype)

        boxes = box_ops.denormalize_boxes(boxes, pshape[:2])
        boxes = boxes + tf.cast([
            translate[0] * ys, translate[1] * xs, translate[0] * ys,
            translate[1] * xs
        ], boxes.dtype)
        boxes = box_ops.normalize_boxes(boxes, ishape[:2])
        return boxes, classes
Example #9
0
    def _build_label(self, boxes, classes, image_info, unpad_image_shape,
                     data):

        # Sets up groundtruth data for evaluation.
        groundtruths = {
            'source_id':
            data['source_id'],
            'height':
            data['height'],
            'width':
            data['width'],
            'num_detections':
            tf.shape(data['groundtruth_classes'])[0],
            'boxes':
            box_ops.denormalize_boxes(data['groundtruth_boxes'],
                                      tf.shape(input=data['image'])[0:2]),
            'classes':
            data['groundtruth_classes'],
            'areas':
            data['groundtruth_area'],
            'is_crowds':
            tf.cast(data['groundtruth_is_crowd'], tf.int32),
        }

        groundtruths['source_id'] = utils.process_source_id(
            groundtruths['source_id'])
        groundtruths = utils.pad_groundtruths_to_fixed_size(
            groundtruths, self._max_num_instances)

        labels = {
            'boxes':
            preprocess_ops.clip_or_pad_to_fixed_size(boxes,
                                                     self._max_num_instances,
                                                     -1),
            'classes':
            preprocess_ops.clip_or_pad_to_fixed_size(classes,
                                                     self._max_num_instances,
                                                     -1),
            'image_info':
            image_info,
            'unpad_image_shapes':
            unpad_image_shape,
            'groundtruths':
            groundtruths
        }

        return labels
Example #10
0
    def _reorg_boxes(self, boxes, info, num_detections):
        """Scale and Clean boxes prior to Evaluation."""
        mask = tf.sequence_mask(num_detections, maxlen=tf.shape(boxes)[1])
        mask = tf.cast(tf.expand_dims(mask, axis=-1), boxes.dtype)

        # Denormalize the boxes by the shape of the image
        inshape = tf.expand_dims(info[:, 1, :], axis=1)
        ogshape = tf.expand_dims(info[:, 0, :], axis=1)
        scale = tf.expand_dims(info[:, 2, :], axis=1)
        offset = tf.expand_dims(info[:, 3, :], axis=1)

        boxes = box_ops.denormalize_boxes(boxes, inshape)
        boxes = box_ops.clip_boxes(boxes, inshape)
        boxes += tf.tile(offset, [1, 1, 2])
        boxes /= tf.tile(scale, [1, 1, 2])
        boxes = box_ops.clip_boxes(boxes, ogshape)

        # Mask the boxes for usage
        boxes *= mask
        boxes += (mask - 1)
        return boxes
Example #11
0
def undo_info(boxes: tf.Tensor,
              num_detections: int,
              info: tf.Tensor,
              expand: bool = True) -> tf.Tensor:
  """Clip and normalize boxes for serving."""

  mask = tf.sequence_mask(num_detections, maxlen=tf.shape(boxes)[1])
  boxes = tf.cast(tf.expand_dims(mask, axis=-1), boxes.dtype) * boxes

  if expand:
    info = tf.cast(tf.expand_dims(info, axis=0), boxes.dtype)
  inshape = tf.expand_dims(info[:, 1, :], axis=1)
  ogshape = tf.expand_dims(info[:, 0, :], axis=1)
  scale = tf.expand_dims(info[:, 2, :], axis=1)
  offset = tf.expand_dims(info[:, 3, :], axis=1)

  boxes = box_ops.denormalize_boxes(boxes, inshape)
  boxes += tf.tile(offset, [1, 1, 2])
  boxes /= tf.tile(scale, [1, 1, 2])
  boxes = box_ops.clip_boxes(boxes, ogshape)
  boxes = box_ops.normalize_boxes(boxes, ogshape)
  return boxes
Example #12
0
    def _parse_train_data(self, data):
        """Parses data for training and evaluation."""
        classes = data['groundtruth_classes'] + self._class_offset
        boxes = data['groundtruth_boxes']
        is_crowd = data['groundtruth_is_crowd']

        # Gets original image.
        image = data['image']

        # Normalizes image with mean and std pixel values.
        image = preprocess_ops.normalize_image(image)
        image, boxes, _ = preprocess_ops.random_horizontal_flip(image, boxes)

        do_crop = tf.greater(tf.random.uniform([]), 0.5)
        if do_crop:
            # Rescale
            boxes = box_ops.denormalize_boxes(boxes, tf.shape(image)[:2])
            index = tf.random.categorical(tf.zeros([1, 3]), 1)[0]
            scales = tf.gather([400.0, 500.0, 600.0], index, axis=0)
            short_side = scales[0]
            image, image_info = preprocess_ops.resize_image(image, short_side)
            boxes = preprocess_ops.resize_and_crop_boxes(
                boxes, image_info[2, :], image_info[1, :], image_info[3, :])
            boxes = box_ops.normalize_boxes(boxes, image_info[1, :])

            # Do croping
            shape = tf.cast(image_info[1], dtype=tf.int32)
            h = tf.random.uniform([],
                                  384,
                                  tf.math.minimum(shape[0], 600),
                                  dtype=tf.int32)
            w = tf.random.uniform([],
                                  384,
                                  tf.math.minimum(shape[1], 600),
                                  dtype=tf.int32)
            i = tf.random.uniform([], 0, shape[0] - h + 1, dtype=tf.int32)
            j = tf.random.uniform([], 0, shape[1] - w + 1, dtype=tf.int32)
            image = tf.image.crop_to_bounding_box(image, i, j, h, w)
            boxes = tf.clip_by_value(
                (boxes[..., :] *
                 tf.cast(tf.stack([shape[0], shape[1], shape[0], shape[1]]),
                         dtype=tf.float32) -
                 tf.cast(tf.stack([i, j, i, j]), dtype=tf.float32)) /
                tf.cast(tf.stack([h, w, h, w]), dtype=tf.float32), 0.0, 1.0)
        scales = tf.constant(self._resize_scales, dtype=tf.float32)
        index = tf.random.categorical(tf.zeros([1, 11]), 1)[0]
        scales = tf.gather(scales, index, axis=0)

        image_shape = tf.shape(image)[:2]
        boxes = box_ops.denormalize_boxes(boxes, image_shape)
        short_side = scales[0]
        image, image_info = preprocess_ops.resize_image(
            image, short_side, max(self._output_size))
        boxes = preprocess_ops.resize_and_crop_boxes(boxes, image_info[2, :],
                                                     image_info[1, :],
                                                     image_info[3, :])
        boxes = box_ops.normalize_boxes(boxes, image_info[1, :])

        # Filters out ground truth boxes that are all zeros.
        indices = box_ops.get_non_empty_box_indices(boxes)
        boxes = tf.gather(boxes, indices)
        classes = tf.gather(classes, indices)
        is_crowd = tf.gather(is_crowd, indices)
        boxes = box_ops.yxyx_to_cycxhw(boxes)

        image = tf.image.pad_to_bounding_box(image, 0, 0, self._output_size[0],
                                             self._output_size[1])
        labels = {
            'classes':
            preprocess_ops.clip_or_pad_to_fixed_size(classes,
                                                     self._max_num_boxes),
            'boxes':
            preprocess_ops.clip_or_pad_to_fixed_size(boxes,
                                                     self._max_num_boxes)
        }

        return image, labels
Example #13
0
  def preprocess(self, inputs):
    """Preprocess COCO for DETR."""
    image = inputs['image']
    boxes = inputs['objects']['bbox']
    classes = inputs['objects']['label'] + 1
    is_crowd = inputs['objects']['is_crowd']

    image = preprocess_ops.normalize_image(image)
    if self._params.is_training:
      image, boxes, _ = preprocess_ops.random_horizontal_flip(image, boxes)

      do_crop = tf.greater(tf.random.uniform([]), 0.5)
      if do_crop:
        # Rescale
        boxes = box_ops.denormalize_boxes(boxes, tf.shape(image)[:2])
        index = tf.random.categorical(tf.zeros([1, 3]), 1)[0]
        scales = tf.gather([400.0, 500.0, 600.0], index, axis=0)
        short_side = scales[0]
        image, image_info = preprocess_ops.resize_image(image, short_side)
        boxes = preprocess_ops.resize_and_crop_boxes(boxes,
                                                     image_info[2, :],
                                                     image_info[1, :],
                                                     image_info[3, :])
        boxes = box_ops.normalize_boxes(boxes, image_info[1, :])

        # Do croping
        shape = tf.cast(image_info[1], dtype=tf.int32)
        h = tf.random.uniform(
            [], 384, tf.math.minimum(shape[0], 600), dtype=tf.int32)
        w = tf.random.uniform(
            [], 384, tf.math.minimum(shape[1], 600), dtype=tf.int32)
        i = tf.random.uniform([], 0, shape[0] - h + 1, dtype=tf.int32)
        j = tf.random.uniform([], 0, shape[1] - w + 1, dtype=tf.int32)
        image = tf.image.crop_to_bounding_box(image, i, j, h, w)
        boxes = tf.clip_by_value(
            (boxes[..., :] * tf.cast(
                tf.stack([shape[0], shape[1], shape[0], shape[1]]),
                dtype=tf.float32) -
             tf.cast(tf.stack([i, j, i, j]), dtype=tf.float32)) /
            tf.cast(tf.stack([h, w, h, w]), dtype=tf.float32), 0.0, 1.0)
      scales = tf.constant(
          self._params.resize_scales,
          dtype=tf.float32)
      index = tf.random.categorical(tf.zeros([1, 11]), 1)[0]
      scales = tf.gather(scales, index, axis=0)
    else:
      scales = tf.constant([self._params.resize_scales[-1]], tf.float32)

    image_shape = tf.shape(image)[:2]
    boxes = box_ops.denormalize_boxes(boxes, image_shape)
    gt_boxes = boxes
    short_side = scales[0]
    image, image_info = preprocess_ops.resize_image(
        image,
        short_side,
        max(self._params.output_size))
    boxes = preprocess_ops.resize_and_crop_boxes(boxes,
                                                 image_info[2, :],
                                                 image_info[1, :],
                                                 image_info[3, :])
    boxes = box_ops.normalize_boxes(boxes, image_info[1, :])

    # Filters out ground truth boxes that are all zeros.
    indices = box_ops.get_non_empty_box_indices(boxes)
    boxes = tf.gather(boxes, indices)
    classes = tf.gather(classes, indices)
    is_crowd = tf.gather(is_crowd, indices)
    boxes = box_ops.yxyx_to_cycxhw(boxes)

    image = tf.image.pad_to_bounding_box(
        image, 0, 0, self._params.output_size[0], self._params.output_size[1])
    labels = {
        'classes':
            preprocess_ops.clip_or_pad_to_fixed_size(
                classes, self._params.max_num_boxes),
        'boxes':
            preprocess_ops.clip_or_pad_to_fixed_size(
                boxes, self._params.max_num_boxes)
    }
    if not self._params.is_training:
      labels.update({
          'id':
              inputs['image/id'],
          'image_info':
              image_info,
          'is_crowd':
              preprocess_ops.clip_or_pad_to_fixed_size(
                  is_crowd, self._params.max_num_boxes),
          'gt_boxes':
              preprocess_ops.clip_or_pad_to_fixed_size(
                  gt_boxes, self._params.max_num_boxes),
      })

    return image, labels
Example #14
0
    def _parse_train_data(self, data):
        """Parses data for training."""

        # Initialize the shape constants.
        image = data['image']
        boxes = data['groundtruth_boxes']
        classes = data['groundtruth_classes']

        if self._random_flip:
            # Randomly flip the image horizontally.
            image, boxes, _ = preprocess_ops.random_horizontal_flip(
                image, boxes, seed=self._seed)

        if not data['is_mosaic']:
            image, infos, affine = self._jitter_scale(
                image, [self._image_h, self._image_w], self._letter_box,
                self._jitter, self._random_pad, self._aug_scale_min,
                self._aug_scale_max, self._aug_rand_translate,
                self._aug_rand_angle, self._aug_rand_perspective)

            # Clip and clean boxes.
            boxes, inds = preprocessing_ops.transform_and_clip_boxes(
                boxes,
                infos,
                affine=affine,
                shuffle_boxes=False,
                area_thresh=self._area_thresh,
                filter_and_clip_boxes=True,
                seed=self._seed)
            classes = tf.gather(classes, inds)
            info = infos[-1]
        else:
            image = tf.image.resize(image, (self._image_h, self._image_w),
                                    method='nearest')
            output_size = tf.cast([self._image_h, self._image_w], tf.float32)
            boxes_ = bbox_ops.denormalize_boxes(boxes, output_size)
            inds = bbox_ops.get_non_empty_box_indices(boxes_)
            boxes = tf.gather(boxes, inds)
            classes = tf.gather(classes, inds)
            info = self._pad_infos_object(image)

        # Apply scaling to the hue saturation and brightness of an image.
        image = tf.cast(image, dtype=self._dtype)
        image = image / 255.0
        image = preprocessing_ops.image_rand_hsv(
            image,
            self._aug_rand_hue,
            self._aug_rand_saturation,
            self._aug_rand_brightness,
            seed=self._seed,
            darknet=self._darknet or self._level_limits is not None)

        # Cast the image to the selcted datatype.
        image, labels = self._build_label(image,
                                          boxes,
                                          classes,
                                          info,
                                          inds,
                                          data,
                                          is_training=True)
        return image, labels
Example #15
0
    def _build_label(self,
                     image,
                     gt_boxes,
                     gt_classes,
                     info,
                     inds,
                     data,
                     is_training=True):
        """Label construction for both the train and eval data."""
        width = self._image_w
        height = self._image_h

        # Set the image shape.
        imshape = image.get_shape().as_list()
        imshape[-1] = 3
        image.set_shape(imshape)

        labels = dict()
        (labels['inds'], labels['upds'],
         labels['true_conf']) = self._label_builder(gt_boxes, gt_classes,
                                                    width, height)

        # Set/fix the boxes shape.
        boxes = self.set_shape(gt_boxes, pad_axis=0, pad_value=0)
        classes = self.set_shape(gt_classes, pad_axis=0, pad_value=-1)

        # Build the dictionary set.
        labels.update({
            'source_id': utils.process_source_id(data['source_id']),
            'bbox': tf.cast(boxes, dtype=self._dtype),
            'classes': tf.cast(classes, dtype=self._dtype),
        })

        # Update the labels dictionary.
        if not is_training:
            # Sets up groundtruth data for evaluation.
            groundtruths = {
                'source_id':
                labels['source_id'],
                'height':
                data['height'],
                'width':
                data['width'],
                'num_detections':
                tf.shape(data['groundtruth_boxes'])[0],
                'image_info':
                info,
                'boxes':
                bbox_ops.denormalize_boxes(
                    data['groundtruth_boxes'],
                    tf.cast([data['height'], data['width']], gt_boxes.dtype)),
                'classes':
                data['groundtruth_classes'],
                'areas':
                data['groundtruth_area'],
                'is_crowds':
                tf.cast(tf.gather(data['groundtruth_is_crowd'], inds),
                        tf.int32),
            }
            groundtruths['source_id'] = utils.process_source_id(
                groundtruths['source_id'])
            groundtruths = utils.pad_groundtruths_to_fixed_size(
                groundtruths, self._max_num_instances)
            labels['groundtruths'] = groundtruths
        return image, labels
Example #16
0
    def _parse_train_data(self, data):
        """Generates images and labels that are usable for model training.

    We use random flip, random scaling (between 0.6 to 1.3), cropping,
    and color jittering as data augmentation

    Args:
        data: the decoded tensor dictionary from TfExampleDecoder.

    Returns:
        images: the image tensor.
        labels: a dict of Tensors that contains labels.
    """

        image = tf.cast(data['image'], dtype=tf.float32)
        boxes = data['groundtruth_boxes']
        classes = data['groundtruth_classes']

        image_shape = tf.shape(input=image)[0:2]

        if self._aug_rand_hflip:
            image, boxes, _ = preprocess_ops.random_horizontal_flip(
                image, boxes)

        # Image augmentation
        if not self._odapi_augmentation:
            # Color and lighting jittering
            if self._aug_rand_hue:
                image = tf.image.random_hue(image=image, max_delta=.02)
            if self._aug_rand_contrast:
                image = tf.image.random_contrast(image=image,
                                                 lower=0.8,
                                                 upper=1.25)
            if self._aug_rand_saturation:
                image = tf.image.random_saturation(image=image,
                                                   lower=0.8,
                                                   upper=1.25)
            if self._aug_rand_brightness:
                image = tf.image.random_brightness(image=image, max_delta=.2)
            image = tf.clip_by_value(image,
                                     clip_value_min=0.0,
                                     clip_value_max=255.0)
            # Converts boxes from normalized coordinates to pixel coordinates.
            boxes = box_ops.denormalize_boxes(boxes, image_shape)

            # Resizes and crops image.
            image, image_info = preprocess_ops.resize_and_crop_image(
                image, [self._output_height, self._output_width],
                padded_size=[self._output_height, self._output_width],
                aug_scale_min=self._aug_scale_min,
                aug_scale_max=self._aug_scale_max)
            unpad_image_shape = tf.cast(tf.shape(image), tf.float32)

            # Resizes and crops boxes.
            image_scale = image_info[2, :]
            offset = image_info[3, :]
            boxes = preprocess_ops.resize_and_crop_boxes(
                boxes, image_scale, image_info[1, :], offset)

        else:
            # Color and lighting jittering
            if self._aug_rand_hue:
                image = cn_prep_ops.random_adjust_hue(image=image,
                                                      max_delta=.02)
            if self._aug_rand_contrast:
                image = cn_prep_ops.random_adjust_contrast(image=image,
                                                           min_delta=0.8,
                                                           max_delta=1.25)
            if self._aug_rand_saturation:
                image = cn_prep_ops.random_adjust_saturation(image=image,
                                                             min_delta=0.8,
                                                             max_delta=1.25)
            if self._aug_rand_brightness:
                image = cn_prep_ops.random_adjust_brightness(image=image,
                                                             max_delta=.2)

            sc_image, sc_boxes, classes = cn_prep_ops.random_square_crop_by_scale(
                image=image,
                boxes=boxes,
                labels=classes,
                scale_min=self._aug_scale_min,
                scale_max=self._aug_scale_max)

            image, unpad_image_shape = cn_prep_ops.resize_to_range(
                image=sc_image,
                min_dimension=self._output_width,
                max_dimension=self._output_width,
                pad_to_max_dimension=True)
            preprocessed_shape = tf.cast(tf.shape(image), tf.float32)
            unpad_image_shape = tf.cast(unpad_image_shape, tf.float32)

            im_box = tf.stack([
                0.0, 0.0, preprocessed_shape[0] / unpad_image_shape[0],
                preprocessed_shape[1] / unpad_image_shape[1]
            ])
            realigned_bboxes = box_list_ops.change_coordinate_frame(
                boxlist=box_list.BoxList(sc_boxes), window=im_box)

            valid_boxes = box_list_ops.assert_or_prune_invalid_boxes(
                realigned_bboxes.get())

            boxes = box_list_ops.to_absolute_coordinates(
                boxlist=box_list.BoxList(valid_boxes),
                height=self._output_height,
                width=self._output_width).get()

            image_info = tf.stack([
                tf.cast(image_shape, dtype=tf.float32),
                tf.constant([self._output_height, self._output_width],
                            dtype=tf.float32),
                tf.cast(tf.shape(sc_image)[0:2] / image_shape,
                        dtype=tf.float32),
                tf.constant([0., 0.])
            ])

        # Filters out ground truth boxes that are all zeros.
        indices = box_ops.get_non_empty_box_indices(boxes)
        boxes = tf.gather(boxes, indices)
        classes = tf.gather(classes, indices)

        labels = self._build_label(unpad_image_shape=unpad_image_shape,
                                   boxes=boxes,
                                   classes=classes,
                                   image_info=image_info,
                                   data=data)

        if self._bgr_ordering:
            red, green, blue = tf.unstack(image, num=3, axis=2)
            image = tf.stack([blue, green, red], axis=2)

        image = preprocess_ops.normalize_image(image=image,
                                               offset=self._channel_means,
                                               scale=self._channel_stds)

        image = tf.cast(image, self._dtype)

        return image, labels
    def _parse_train_data(self, data):
        """Parses data for training and evaluation."""
        classes = data['groundtruth_classes']
        boxes = data['groundtruth_boxes']
        # If not empty, `attributes` is a dict of (name, ground_truth) pairs.
        # `ground_gruth` of attributes is assumed in shape [N, attribute_size].
        # TODO(xianzhi): support parsing attributes weights.
        attributes = data.get('groundtruth_attributes', {})
        is_crowds = data['groundtruth_is_crowd']

        # Skips annotations with `is_crowd` = True.
        if self._skip_crowd_during_training:
            num_groundtrtuhs = tf.shape(input=classes)[0]
            with tf.control_dependencies([num_groundtrtuhs, is_crowds]):
                indices = tf.cond(
                    pred=tf.greater(tf.size(input=is_crowds), 0),
                    true_fn=lambda: tf.where(tf.logical_not(is_crowds))[:, 0],
                    false_fn=lambda: tf.cast(tf.range(num_groundtrtuhs), tf.
                                             int64))
            classes = tf.gather(classes, indices)
            boxes = tf.gather(boxes, indices)
            for k, v in attributes.items():
                attributes[k] = tf.gather(v, indices)

        # Gets original image.
        image = data['image']

        # Apply autoaug or randaug.
        if self._augmenter is not None:
            image, boxes = self._augmenter.distort_with_boxes(image, boxes)
        image_shape = tf.shape(input=image)[0:2]

        # Normalizes image with mean and std pixel values.
        image = preprocess_ops.normalize_image(image)

        # Flips image randomly during training.
        if self._aug_rand_hflip:
            image, boxes, _ = preprocess_ops.random_horizontal_flip(
                image, boxes)

        # Converts boxes from normalized coordinates to pixel coordinates.
        boxes = box_ops.denormalize_boxes(boxes, image_shape)

        # Resizes and crops image.
        image, image_info = preprocess_ops.resize_and_crop_image(
            image,
            self._output_size,
            padded_size=preprocess_ops.compute_padded_size(
                self._output_size, 2**self._max_level),
            aug_scale_min=self._aug_scale_min,
            aug_scale_max=self._aug_scale_max)
        image_height, image_width, _ = image.get_shape().as_list()

        # Resizes and crops boxes.
        image_scale = image_info[2, :]
        offset = image_info[3, :]
        boxes = preprocess_ops.resize_and_crop_boxes(boxes, image_scale,
                                                     image_info[1, :], offset)
        # Filters out ground truth boxes that are all zeros.
        indices = box_ops.get_non_empty_box_indices(boxes)
        boxes = tf.gather(boxes, indices)
        classes = tf.gather(classes, indices)
        for k, v in attributes.items():
            attributes[k] = tf.gather(v, indices)

        # Assigns anchors.
        input_anchor = anchor.build_anchor_generator(
            min_level=self._min_level,
            max_level=self._max_level,
            num_scales=self._num_scales,
            aspect_ratios=self._aspect_ratios,
            anchor_size=self._anchor_size)
        anchor_boxes = input_anchor(image_size=(image_height, image_width))
        anchor_labeler = anchor.AnchorLabeler(self._match_threshold,
                                              self._unmatched_threshold)
        (cls_targets, box_targets, att_targets, cls_weights,
         box_weights) = anchor_labeler.label_anchors(
             anchor_boxes, boxes, tf.expand_dims(classes, axis=1), attributes)

        # Casts input image to desired data type.
        image = tf.cast(image, dtype=self._dtype)

        # Packs labels for model_fn outputs.
        labels = {
            'cls_targets': cls_targets,
            'box_targets': box_targets,
            'anchor_boxes': anchor_boxes,
            'cls_weights': cls_weights,
            'box_weights': box_weights,
            'image_info': image_info,
        }
        if att_targets:
            labels['attribute_targets'] = att_targets
        return image, labels
Example #18
0
  def _parse_eval_data(self, data):
    """Parses data for evaluation.

    Args:
      data: the decoded tensor dictionary from TfExampleDecoder.

    Returns:
      A dictionary of {'images': image, 'labels': labels} where
        image: image tensor that is preproessed to have normalized value and
          dimension [output_size[0], output_size[1], 3]
        labels: a dictionary of tensors used for training. The following
          describes {key: value} pairs in the dictionary.
          source_ids: Source image id. Default value -1 if the source id is
            empty in the groundtruth annotation.
          image_info: a 2D `Tensor` that encodes the information of the image
            and the applied preprocessing. It is in the format of
            [[original_height, original_width], [scaled_height, scaled_width],
          anchor_boxes: ordered dictionary with keys
            [min_level, min_level+1, ..., max_level]. The values are tensor with
            shape [height_l, width_l, 4] representing anchor boxes at each
            level.
    """
    # Gets original image and its size.
    image = data['image']
    image_shape = tf.shape(image)[0:2]

    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image)

    # Resizes and crops image.
    image, image_info = preprocess_ops.resize_and_crop_image(
        image,
        self._output_size,
        padded_size=preprocess_ops.compute_padded_size(
            self._output_size, 2 ** self._max_level),
        aug_scale_min=1.0,
        aug_scale_max=1.0)
    image_height, image_width, _ = image.get_shape().as_list()

    # Casts input image to self._dtype
    image = tf.cast(image, dtype=self._dtype)

    # Converts boxes from normalized coordinates to pixel coordinates.
    boxes = box_ops.denormalize_boxes(data['groundtruth_boxes'], image_shape)

    # Compute Anchor boxes.
    input_anchor = anchor.build_anchor_generator(
        min_level=self._min_level,
        max_level=self._max_level,
        num_scales=self._num_scales,
        aspect_ratios=self._aspect_ratios,
        anchor_size=self._anchor_size)
    anchor_boxes = input_anchor(image_size=(image_height, image_width))

    labels = {
        'image_info': image_info,
        'anchor_boxes': anchor_boxes,
    }

    groundtruths = {
        'source_id': data['source_id'],
        'height': data['height'],
        'width': data['width'],
        'num_detections': tf.shape(data['groundtruth_classes'])[0],
        'boxes': boxes,
        'classes': data['groundtruth_classes'],
        'areas': data['groundtruth_area'],
        'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32),
    }
    groundtruths['source_id'] = utils.process_source_id(
        groundtruths['source_id'])
    groundtruths = utils.pad_groundtruths_to_fixed_size(
        groundtruths, self._max_num_instances)
    labels['groundtruths'] = groundtruths
    return image, labels
    def _parse_eval_data(self, data):
        """Parses data for training and evaluation."""
        groundtruths = {}
        classes = data['groundtruth_classes']
        boxes = data['groundtruth_boxes']
        # If not empty, `attributes` is a dict of (name, ground_truth) pairs.
        # `ground_gruth` of attributes is assumed in shape [N, attribute_size].
        # TODO(xianzhi): support parsing attributes weights.
        attributes = data.get('groundtruth_attributes', {})

        # Gets original image and its size.
        image = data['image']
        image_shape = tf.shape(input=image)[0:2]

        # Normalizes image with mean and std pixel values.
        image = preprocess_ops.normalize_image(image)

        # Converts boxes from normalized coordinates to pixel coordinates.
        boxes = box_ops.denormalize_boxes(boxes, image_shape)

        # Resizes and crops image.
        image, image_info = preprocess_ops.resize_and_crop_image(
            image,
            self._output_size,
            padded_size=preprocess_ops.compute_padded_size(
                self._output_size, 2**self._max_level),
            aug_scale_min=1.0,
            aug_scale_max=1.0)
        image_height, image_width, _ = image.get_shape().as_list()

        # Resizes and crops boxes.
        image_scale = image_info[2, :]
        offset = image_info[3, :]
        boxes = preprocess_ops.resize_and_crop_boxes(boxes, image_scale,
                                                     image_info[1, :], offset)
        # Filters out ground truth boxes that are all zeros.
        indices = box_ops.get_non_empty_box_indices(boxes)
        boxes = tf.gather(boxes, indices)
        classes = tf.gather(classes, indices)
        for k, v in attributes.items():
            attributes[k] = tf.gather(v, indices)

        # Assigns anchors.
        input_anchor = anchor.build_anchor_generator(
            min_level=self._min_level,
            max_level=self._max_level,
            num_scales=self._num_scales,
            aspect_ratios=self._aspect_ratios,
            anchor_size=self._anchor_size)
        anchor_boxes = input_anchor(image_size=(image_height, image_width))
        anchor_labeler = anchor.AnchorLabeler(self._match_threshold,
                                              self._unmatched_threshold)
        (cls_targets, box_targets, att_targets, cls_weights,
         box_weights) = anchor_labeler.label_anchors(
             anchor_boxes, boxes, tf.expand_dims(classes, axis=1), attributes)

        # Casts input image to desired data type.
        image = tf.cast(image, dtype=self._dtype)

        # Sets up groundtruth data for evaluation.
        groundtruths = {
            'source_id':
            data['source_id'],
            'height':
            data['height'],
            'width':
            data['width'],
            'num_detections':
            tf.shape(data['groundtruth_classes']),
            'image_info':
            image_info,
            'boxes':
            box_ops.denormalize_boxes(data['groundtruth_boxes'], image_shape),
            'classes':
            data['groundtruth_classes'],
            'areas':
            data['groundtruth_area'],
            'is_crowds':
            tf.cast(data['groundtruth_is_crowd'], tf.int32),
        }
        if 'groundtruth_attributes' in data:
            groundtruths['attributes'] = data['groundtruth_attributes']
        groundtruths['source_id'] = utils.process_source_id(
            groundtruths['source_id'])
        groundtruths = utils.pad_groundtruths_to_fixed_size(
            groundtruths, self._max_num_instances)

        # Packs labels for model_fn outputs.
        labels = {
            'cls_targets': cls_targets,
            'box_targets': box_targets,
            'anchor_boxes': anchor_boxes,
            'cls_weights': cls_weights,
            'box_weights': box_weights,
            'image_info': image_info,
            'groundtruths': groundtruths,
        }
        if att_targets:
            labels['attribute_targets'] = att_targets
        return image, labels
Example #20
0
  def _parse_train_data(self, data):
    """Parses data for training.

    Args:
      data: the decoded tensor dictionary from TfExampleDecoder.

    Returns:
      image: image tensor that is preproessed to have normalized value and
        dimension [output_size[0], output_size[1], 3]
      labels: a dictionary of tensors used for training. The following describes
        {key: value} pairs in the dictionary.
        image_info: a 2D `Tensor` that encodes the information of the image and
          the applied preprocessing. It is in the format of
          [[original_height, original_width], [scaled_height, scaled_width],
        anchor_boxes: ordered dictionary with keys
          [min_level, min_level+1, ..., max_level]. The values are tensor with
          shape [height_l, width_l, 4] representing anchor boxes at each level.
        rpn_score_targets: ordered dictionary with keys
          [min_level, min_level+1, ..., max_level]. The values are tensor with
          shape [height_l, width_l, anchors_per_location]. The height_l and
          width_l represent the dimension of class logits at l-th level.
        rpn_box_targets: ordered dictionary with keys
          [min_level, min_level+1, ..., max_level]. The values are tensor with
          shape [height_l, width_l, anchors_per_location * 4]. The height_l and
          width_l represent the dimension of bounding box regression output at
          l-th level.
        gt_boxes: Groundtruth bounding box annotations. The box is represented
           in [y1, x1, y2, x2] format. The coordinates are w.r.t the scaled
           image that is fed to the network. The tennsor is padded with -1 to
           the fixed dimension [self._max_num_instances, 4].
        gt_classes: Groundtruth classes annotations. The tennsor is padded
          with -1 to the fixed dimension [self._max_num_instances].
        gt_masks: groundtrugh masks cropped by the bounding box and
          resized to a fixed size determined by mask_crop_size.
    """
    classes = data['groundtruth_classes']
    boxes = data['groundtruth_boxes']
    if self._include_mask:
      masks = data['groundtruth_instance_masks']

    is_crowds = data['groundtruth_is_crowd']
    # Skips annotations with `is_crowd` = True.
    if self._skip_crowd_during_training:
      num_groundtruths = tf.shape(classes)[0]
      with tf.control_dependencies([num_groundtruths, is_crowds]):
        indices = tf.cond(
            tf.greater(tf.size(is_crowds), 0),
            lambda: tf.where(tf.logical_not(is_crowds))[:, 0],
            lambda: tf.cast(tf.range(num_groundtruths), tf.int64))
      classes = tf.gather(classes, indices)
      boxes = tf.gather(boxes, indices)
      if self._include_mask:
        masks = tf.gather(masks, indices)

    # Gets original image and its size.
    image = data['image']
    if self._augmenter is not None:
      image = self._augmenter.distort(image)

    image_shape = tf.shape(image)[0:2]

    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image)

    # Flips image randomly during training.
    if self._aug_rand_hflip:
      if self._include_mask:
        image, boxes, masks = preprocess_ops.random_horizontal_flip(
            image, boxes, masks)
      else:
        image, boxes, _ = preprocess_ops.random_horizontal_flip(
            image, boxes)

    # Converts boxes from normalized coordinates to pixel coordinates.
    # Now the coordinates of boxes are w.r.t. the original image.
    boxes = box_ops.denormalize_boxes(boxes, image_shape)

    # Resizes and crops image.
    image, image_info = preprocess_ops.resize_and_crop_image(
        image,
        self._output_size,
        padded_size=preprocess_ops.compute_padded_size(
            self._output_size, 2 ** self._max_level),
        aug_scale_min=self._aug_scale_min,
        aug_scale_max=self._aug_scale_max)
    image_height, image_width, _ = image.get_shape().as_list()

    # Resizes and crops boxes.
    # Now the coordinates of boxes are w.r.t the scaled image.
    image_scale = image_info[2, :]
    offset = image_info[3, :]
    boxes = preprocess_ops.resize_and_crop_boxes(
        boxes, image_scale, image_info[1, :], offset)

    # Filters out ground truth boxes that are all zeros.
    indices = box_ops.get_non_empty_box_indices(boxes)
    boxes = tf.gather(boxes, indices)
    classes = tf.gather(classes, indices)
    if self._include_mask:
      masks = tf.gather(masks, indices)
      # Transfer boxes to the original image space and do normalization.
      cropped_boxes = boxes + tf.tile(tf.expand_dims(offset, axis=0), [1, 2])
      cropped_boxes /= tf.tile(tf.expand_dims(image_scale, axis=0), [1, 2])
      cropped_boxes = box_ops.normalize_boxes(cropped_boxes, image_shape)
      num_masks = tf.shape(masks)[0]
      masks = tf.image.crop_and_resize(
          tf.expand_dims(masks, axis=-1),
          cropped_boxes,
          box_indices=tf.range(num_masks, dtype=tf.int32),
          crop_size=[self._mask_crop_size, self._mask_crop_size],
          method='bilinear')
      masks = tf.squeeze(masks, axis=-1)

    # Assigns anchor targets.
    # Note that after the target assignment, box targets are absolute pixel
    # offsets w.r.t. the scaled image.
    input_anchor = anchor.build_anchor_generator(
        min_level=self._min_level,
        max_level=self._max_level,
        num_scales=self._num_scales,
        aspect_ratios=self._aspect_ratios,
        anchor_size=self._anchor_size)
    anchor_boxes = input_anchor(image_size=(image_height, image_width))
    anchor_labeler = anchor.RpnAnchorLabeler(
        self._rpn_match_threshold,
        self._rpn_unmatched_threshold,
        self._rpn_batch_size_per_im,
        self._rpn_fg_fraction)
    rpn_score_targets, rpn_box_targets = anchor_labeler.label_anchors(
        anchor_boxes, boxes,
        tf.cast(tf.expand_dims(classes, axis=-1), dtype=tf.float32))

    # Casts input image to self._dtype
    image = tf.cast(image, dtype=self._dtype)

    # Packs labels for model_fn outputs.
    labels = {
        'anchor_boxes':
            anchor_boxes,
        'image_info':
            image_info,
        'rpn_score_targets':
            rpn_score_targets,
        'rpn_box_targets':
            rpn_box_targets,
        'gt_boxes':
            preprocess_ops.clip_or_pad_to_fixed_size(boxes,
                                                     self._max_num_instances,
                                                     -1),
        'gt_classes':
            preprocess_ops.clip_or_pad_to_fixed_size(classes,
                                                     self._max_num_instances,
                                                     -1),
    }
    if self._include_mask:
      labels['gt_masks'] = preprocess_ops.clip_or_pad_to_fixed_size(
          masks, self._max_num_instances, -1)

    return image, labels
def transform_and_clip_boxes(boxes,
                             infos,
                             affine=None,
                             shuffle_boxes=False,
                             area_thresh=0.1,
                             seed=None,
                             filter_and_clip_boxes=True):
  """Clips and cleans the boxes.

  Args:
    boxes: A `Tensor` for the boxes.
    infos: A `list` that contains the image infos.
    affine: A `list` that contains parameters for resize and crop.
    shuffle_boxes: A `bool` for shuffling the boxes.
    area_thresh: An `int` for the area threshold.
    seed: seed for random number generation.
    filter_and_clip_boxes: A `bool` for filtering and clipping the boxes to
      [0, 1].

  Returns:
    boxes: A `Tensor` representing the augmented boxes.
    ind: A `Tensor` valid box indices.
  """

  # Clip and clean boxes.
  def get_valid_boxes(boxes):
    """Get indices for non-empty boxes."""
    # Convert the boxes to center width height formatting.
    height = boxes[:, 2] - boxes[:, 0]
    width = boxes[:, 3] - boxes[:, 1]
    base = tf.logical_and(tf.greater(height, 0), tf.greater(width, 0))
    return base

  # Initialize history to track operation applied to boxes
  box_history = boxes

  # Make sure all boxes are valid to start, clip to [0, 1] and get only the
  # valid boxes.
  output_size = None
  if filter_and_clip_boxes:
    boxes = tf.math.maximum(tf.math.minimum(boxes, 1.0), 0.0)
  cond = get_valid_boxes(boxes)

  if infos is None:
    infos = []

  for info in infos:
    # Denormalize the boxes.
    boxes = bbox_ops.denormalize_boxes(boxes, info[0])
    box_history = bbox_ops.denormalize_boxes(box_history, info[0])

    # Shift and scale all boxes, and keep track of box history with no
    # box clipping, history is used for removing boxes that have become
    # too small or exit the image area.
    (boxes, box_history) = resize_and_crop_boxes(
        boxes, info[2, :], info[1, :], info[3, :], box_history=box_history)

    # Get all the boxes that still remain in the image and store
    # in a bit vector for later use.
    cond = tf.logical_and(get_valid_boxes(boxes), cond)

    # Normalize the boxes to [0, 1].
    output_size = info[1]
    boxes = bbox_ops.normalize_boxes(boxes, output_size)
    box_history = bbox_ops.normalize_boxes(box_history, output_size)

  if affine is not None:
    # Denormalize the boxes.
    boxes = bbox_ops.denormalize_boxes(boxes, affine[0])
    box_history = bbox_ops.denormalize_boxes(box_history, affine[0])

    # Clipped final boxes.
    (boxes, box_history) = affine_warp_boxes(
        affine[2], boxes, affine[1], box_history=box_history)

    # Get all the boxes that still remain in the image and store
    # in a bit vector for later use.
    cond = tf.logical_and(get_valid_boxes(boxes), cond)

    # Normalize the boxes to [0, 1].
    output_size = affine[1]
    boxes = bbox_ops.normalize_boxes(boxes, output_size)
    box_history = bbox_ops.normalize_boxes(box_history, output_size)

  # Remove the bad boxes.
  boxes *= tf.cast(tf.expand_dims(cond, axis=-1), boxes.dtype)

  # Threshold the existing boxes.
  if filter_and_clip_boxes:
    if output_size is not None:
      boxes_ = bbox_ops.denormalize_boxes(boxes, output_size)
      box_history_ = bbox_ops.denormalize_boxes(box_history, output_size)
      inds = boxes_candidates(boxes_, box_history_, area_thr=area_thresh)
    else:
      inds = boxes_candidates(
          boxes, box_history, wh_thr=0.0, area_thr=area_thresh)
    # Select and gather the good boxes.
    if shuffle_boxes:
      inds = tf.random.shuffle(inds, seed=seed)
  else:
    inds = bbox_ops.get_non_empty_box_indices(boxes)
  boxes = tf.gather(boxes, inds)
  return boxes, inds