Example #1
0
    def pre_process(self):
        processed_dir = osp.join(self.root, 'processed')
        pre_processed_file_path = osp.join(processed_dir, 'data_processed')

        if osp.exists(pre_processed_file_path):
            self.graph = torch.load(pre_processed_file_path, 'rb')

        else:
            ### check download
            has_necessary_file_simple = osp.exists(
                osp.join(self.root, "raw",
                         "edge.csv.gz")) and (not self.is_hetero)
            has_necessary_file_hetero = osp.exists(
                osp.join(self.root, "raw",
                         "triplet-type-list.csv.gz")) and self.is_hetero

            has_necessary_file = has_necessary_file_simple or has_necessary_file_hetero

            if not has_necessary_file:
                url = self.meta_info[self.name]["url"]
                if decide_download(url):
                    path = download_url(url, self.original_root)
                    extract_zip(path, self.original_root)
                    os.unlink(path)
                    # delete folder if there exists
                    try:
                        shutil.rmtree(self.root)
                    except:
                        pass
                    shutil.move(
                        osp.join(self.original_root, self.download_name),
                        self.root)
                else:
                    print("Stop download.")
                    exit(-1)

            raw_dir = osp.join(self.root, "raw")

            ### pre-process and save
            add_inverse_edge = self.meta_info[
                self.name]["add_inverse_edge"] == "True"

            if self.meta_info[self.name]["additional node files"] == 'None':
                additional_node_files = []
            else:
                additional_node_files = self.meta_info[
                    self.name]["additional node files"].split(',')

            if self.meta_info[self.name]["additional edge files"] == 'None':
                additional_edge_files = []
            else:
                additional_edge_files = self.meta_info[
                    self.name]["additional edge files"].split(',')

            if self.is_hetero:
                self.graph = read_csv_heterograph_raw(
                    raw_dir,
                    add_inverse_edge=add_inverse_edge,
                    additional_node_files=additional_node_files,
                    additional_edge_files=additional_edge_files)[
                        0]  # only a single graph

            else:
                self.graph = read_csv_graph_raw(
                    raw_dir,
                    add_inverse_edge=add_inverse_edge,
                    additional_node_files=additional_node_files,
                    additional_edge_files=additional_edge_files)[
                        0]  # only a single graph

            print('Saving...')
            torch.save(self.graph, pre_processed_file_path, pickle_protocol=4)
Example #2
0
    def pre_process(self):
        processed_dir = osp.join(self.root, 'processed')
        pre_processed_file_path = osp.join(processed_dir, 'data_processed')

        if osp.exists(pre_processed_file_path):
            # loaded_dict = torch.load(pre_processed_file_path)
            loaded_dict = load_pickle(pre_processed_file_path)
            self.graph, self.labels = loaded_dict['graph'], loaded_dict[
                'labels']

        else:
            ### check download
            if self.binary:
                # npz format
                has_necessary_file_simple = osp.exists(
                    osp.join(self.root, 'raw',
                             'data.npz')) and (not self.is_hetero)
                has_necessary_file_hetero = osp.exists(
                    osp.join(self.root, 'raw',
                             'edge_index_dict.npz')) and self.is_hetero
            else:
                # csv file
                has_necessary_file_simple = osp.exists(
                    osp.join(self.root, 'raw',
                             'edge.csv.gz')) and (not self.is_hetero)
                has_necessary_file_hetero = osp.exists(
                    osp.join(self.root, 'raw',
                             'triplet-type-list.csv.gz')) and self.is_hetero

            has_necessary_file = has_necessary_file_simple or has_necessary_file_hetero

            if not has_necessary_file:
                url = self.meta_info['url']
                if decide_download(url):
                    path = download_url(url, self.original_root)
                    extract_zip(path, self.original_root)
                    os.unlink(path)
                    # delete folder if there exists
                    try:
                        shutil.rmtree(self.root)
                    except:
                        pass
                    shutil.move(
                        osp.join(self.original_root, self.download_name),
                        self.root)
                else:
                    print('Stop download.')
                    exit(-1)

            raw_dir = osp.join(self.root, 'raw')

            ### pre-process and save
            add_inverse_edge = self.meta_info['add_inverse_edge'] == 'True'

            if self.meta_info['additional node files'] == 'None':
                additional_node_files = []
            else:
                additional_node_files = self.meta_info[
                    'additional node files'].split(',')

            if self.meta_info['additional edge files'] == 'None':
                additional_edge_files = []
            else:
                additional_edge_files = self.meta_info[
                    'additional edge files'].split(',')

            if self.is_hetero:
                if self.binary:
                    self.graph = read_binary_heterograph_raw(
                        raw_dir, add_inverse_edge=add_inverse_edge)[
                            0]  # only a single graph

                    tmp = np.load(osp.join(raw_dir, 'node-label.npz'))
                    self.labels = {}
                    for key in list(tmp.keys()):
                        self.labels[key] = tmp[key]
                    del tmp
                else:
                    self.graph = read_csv_heterograph_raw(
                        raw_dir,
                        add_inverse_edge=add_inverse_edge,
                        additional_node_files=additional_node_files,
                        additional_edge_files=additional_edge_files)[
                            0]  # only a single graph
                    self.labels = read_node_label_hetero(raw_dir)

            else:
                if self.binary:
                    self.graph = read_binary_graph_raw(
                        raw_dir, add_inverse_edge=add_inverse_edge)[
                            0]  # only a single graph
                    self.labels = np.load(osp.join(
                        raw_dir, 'node-label.npz'))['node_label']
                else:
                    self.graph = read_csv_graph_raw(
                        raw_dir,
                        add_inverse_edge=add_inverse_edge,
                        additional_node_files=additional_node_files,
                        additional_edge_files=additional_edge_files)[
                            0]  # only a single graph
                    self.labels = pd.read_csv(osp.join(raw_dir,
                                                       'node-label.csv.gz'),
                                              compression='gzip',
                                              header=None).values

            print('Saving...')
            # torch.save({'graph': self.graph, 'labels': self.labels}, pre_processed_file_path, pickle_protocol=4)
            dump_pickle({
                'graph': self.graph,
                'labels': self.labels
            }, pre_processed_file_path)
Example #3
0
    def pre_process(self):
        processed_dir = osp.join(self.root, 'processed')
        raw_dir = osp.join(self.root, 'raw')
        pre_processed_file_path = osp.join(processed_dir, 'data_processed')

        if os.path.exists(pre_processed_file_path):
            loaded_dict = torch.load(pre_processed_file_path, 'rb')
            self.graphs, self.labels = loaded_dict['graphs'], loaded_dict[
                'labels']

        else:
            ### check download
            if self.binary:
                # npz format
                has_necessary_file = osp.exists(
                    osp.join(self.root, 'raw', 'data.npz'))
            else:
                # csv file
                has_necessary_file = osp.exists(
                    osp.join(self.root, 'raw', 'edge.csv.gz'))

            ### download
            if not has_necessary_file:
                url = self.meta_info['url']
                if decide_download(url):
                    path = download_url(url, self.original_root)
                    extract_zip(path, self.original_root)
                    os.unlink(path)
                    # delete folder if there exists
                    try:
                        shutil.rmtree(self.root)
                    except:
                        pass
                    shutil.move(
                        osp.join(self.original_root, self.download_name),
                        self.root)
                else:
                    print('Stop download.')
                    exit(-1)

            ### preprocess
            add_inverse_edge = self.meta_info['add_inverse_edge'] == 'True'

            if self.meta_info['additional node files'] == 'None':
                additional_node_files = []
            else:
                additional_node_files = self.meta_info[
                    'additional node files'].split(',')

            if self.meta_info['additional edge files'] == 'None':
                additional_edge_files = []
            else:
                additional_edge_files = self.meta_info[
                    'additional edge files'].split(',')

            if self.binary:
                self.graphs = read_binary_graph_raw(
                    raw_dir, add_inverse_edge=add_inverse_edge)
            else:
                self.graphs = read_csv_graph_raw(
                    raw_dir,
                    add_inverse_edge=add_inverse_edge,
                    additional_node_files=additional_node_files,
                    additional_edge_files=additional_edge_files)

            if self.task_type == 'subtoken prediction':
                labels_joined = pd.read_csv(osp.join(raw_dir,
                                                     'graph-label.csv.gz'),
                                            compression='gzip',
                                            header=None).values
                # need to split each element into subtokens
                self.labels = [
                    str(labels_joined[i][0]).split(' ')
                    for i in range(len(labels_joined))
                ]
            else:
                if self.binary:
                    self.labels = np.load(osp.join(
                        raw_dir, 'graph-label.npz'))['graph_label']
                else:
                    self.labels = pd.read_csv(osp.join(raw_dir,
                                                       'graph-label.csv.gz'),
                                              compression='gzip',
                                              header=None).values

            print('Saving...')
            torch.save({
                'graphs': self.graphs,
                'labels': self.labels
            },
                       pre_processed_file_path,
                       pickle_protocol=4)
Example #4
0
    def pre_process(self):
        processed_dir = osp.join(self.root, 'processed')
        raw_dir = osp.join(self.root, 'raw')
        pre_processed_file_path = osp.join(processed_dir, 'data_processed')

        if os.path.exists(pre_processed_file_path):
            loaded_dict = torch.load(pre_processed_file_path, 'rb')
            self.graphs, self.labels = loaded_dict['graphs'], loaded_dict[
                'labels']

        else:
            ### download
            url = self.meta_info[self.name]["url"]
            if decide_download(url):
                path = download_url(url, self.original_root)
                extract_zip(path, self.original_root)
                os.unlink(path)
                # delete folder if there exists
                try:
                    shutil.rmtree(self.root)
                except:
                    pass
                shutil.move(osp.join(self.original_root, self.download_name),
                            self.root)
            else:
                print("Stop download.")
                exit(-1)

            ### preprocess
            add_inverse_edge = self.meta_info[
                self.name]["add_inverse_edge"] == "True"

            if self.meta_info[self.name]["additional node files"] == 'None':
                additional_node_files = []
            else:
                additional_node_files = self.meta_info[
                    self.name]["additional node files"].split(',')

            if self.meta_info[self.name]["additional edge files"] == 'None':
                additional_edge_files = []
            else:
                additional_edge_files = self.meta_info[
                    self.name]["additional edge files"].split(',')

            self.graphs = read_csv_graph_raw(
                raw_dir,
                add_inverse_edge=add_inverse_edge,
                additional_node_files=additional_node_files,
                additional_edge_files=additional_edge_files)

            if self.task_type == 'subtoken prediction':
                labels_joined = pd.read_csv(osp.join(raw_dir,
                                                     "graph-label.csv.gz"),
                                            compression="gzip",
                                            header=None).values
                # need to split each element into subtokens
                self.labels = [
                    str(labels_joined[i][0]).split(' ')
                    for i in range(len(labels_joined))
                ]
            else:
                self.labels = pd.read_csv(osp.join(raw_dir,
                                                   "graph-label.csv.gz"),
                                          compression="gzip",
                                          header=None).values

            print('Saving...')
            torch.save({
                'graphs': self.graphs,
                'labels': self.labels
            },
                       pre_processed_file_path,
                       pickle_protocol=4)
Example #5
0
    def pre_process(self):
        processed_dir = osp.join(self.root, 'processed')
        pre_processed_file_path = osp.join(processed_dir, 'data_processed')

        if osp.exists(pre_processed_file_path):
            loaded_dict = torch.load(pre_processed_file_path)
            self.graph, self.labels = loaded_dict['graph'], loaded_dict[
                'labels']

        else:
            ### check download
            if not osp.exists(osp.join(self.root, "raw", "edge.csv.gz")):
                url = self.meta_info[self.name]["url"]
                if decide_download(url):
                    path = download_url(url, self.original_root)
                    extract_zip(path, self.original_root)
                    os.unlink(path)
                    # delete folder if there exists
                    try:
                        shutil.rmtree(self.root)
                    except:
                        pass
                    shutil.move(
                        osp.join(self.original_root, self.download_name),
                        self.root)
                else:
                    print("Stop download.")
                    exit(-1)

            raw_dir = osp.join(self.root, "raw")

            ### pre-process and save
            add_inverse_edge = self.meta_info[
                self.name]["add_inverse_edge"] == "True"

            if self.meta_info[self.name]["additional node files"] == 'None':
                additional_node_files = []
            else:
                additional_node_files = self.meta_info[
                    self.name]["additional node files"].split(',')

            if self.meta_info[self.name]["additional edge files"] == 'None':
                additional_edge_files = []
            else:
                additional_edge_files = self.meta_info[
                    self.name]["additional edge files"].split(',')

            self.graph = read_csv_graph_raw(
                raw_dir,
                add_inverse_edge=add_inverse_edge,
                additional_node_files=additional_node_files,
                additional_edge_files=additional_edge_files)[
                    0]  # only a single graph

            ### adding prediction target
            self.labels = pd.read_csv(osp.join(raw_dir, 'node-label.csv.gz'),
                                      compression="gzip",
                                      header=None).values

            print('Saving...')
            torch.save({
                'graph': self.graph,
                'labels': self.labels
            }, pre_processed_file_path)