Example #1
0
    def setup_cache(self):

        utils.mkdir(self.testdir, reset=True)
        self.cfg_init()

        hef_file = get_demo_file('Hintereisferner_RGI5.shp')
        entity = gpd.read_file(hef_file).iloc[0]

        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)

        tasks.define_glacier_region(gdir, entity=entity)
        tasks.glacier_masks(gdir)
        tasks.compute_centerlines(gdir)
        tasks.initialize_flowlines(gdir)
        tasks.compute_downstream_line(gdir)
        tasks.compute_downstream_bedshape(gdir)
        tasks.catchment_area(gdir)
        tasks.catchment_intersections(gdir)
        tasks.catchment_width_geom(gdir)
        tasks.catchment_width_correction(gdir)
        tasks.process_custom_climate_data(gdir)
        tasks.mu_candidates(gdir)
        mbdf = gdir.get_ref_mb_data()['ANNUAL_BALANCE']
        res = climate.t_star_from_refmb(gdir, mbdf)
        tasks.local_mustar(gdir, tstar=res['t_star'], bias=res['bias'])
        tasks.apparent_mb(gdir)

        tasks.prepare_for_inversion(gdir)
        tasks.mass_conservation_inversion(gdir)

        return gdir
Example #2
0
    def setup_cache(self):

        setattr(full_workflow.setup_cache, "timeout", 360)

        utils.mkdir(self.testdir, reset=True)
        self.cfg_init()

        entity = gpd.read_file(get_demo_file('01_rgi60_Columbia.shp')).iloc[0]
        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)

        tasks.define_glacier_region(gdir, entity=entity)
        tasks.glacier_masks(gdir)
        tasks.compute_centerlines(gdir)
        tasks.initialize_flowlines(gdir)
        tasks.compute_downstream_line(gdir)
        tasks.compute_downstream_bedshape(gdir)
        tasks.catchment_area(gdir)
        tasks.catchment_intersections(gdir)
        tasks.catchment_width_geom(gdir)
        tasks.catchment_width_correction(gdir)
        climate.process_dummy_cru_file(gdir, seed=0)

        # Test default k (it overshoots)
        df1 = utils.find_inversion_calving(gdir)

        # Test with smaller k (it doesn't overshoot)
        cfg.PARAMS['k_calving'] = 0.2
        df2 = utils.find_inversion_calving(gdir)

        return (df1.calving_flux.values, df1.mu_star.values,
                df2.calving_flux.values, df2.mu_star.values)
Example #3
0
    def test_from_dem(self, class_case_dir, monkeypatch):

        # Init
        cfg.initialize()
        cfg.PATHS['working_dir'] = class_case_dir
        cfg.PARAMS['border'] = 10

        monkeypatch.setattr(
            rgitopo, 'DEMS_URL', 'https://cluster.klima.uni-br'
            'emen.de/~oggm/test_gdirs/dem'
            's_v1/default/')

        gd = rgitopo.init_glacier_directories_from_rgitopo(['RGI60-09.01004'])
        gd = gd[0]

        assert gd.has_file('dem')
        assert gd.has_file('dem_source')
        assert gd.has_file('outlines')
        assert gd.has_file('intersects')

        # we can work from here
        tasks.glacier_masks(gd)
Example #4
0
import geopandas as gpd
import oggm
from oggm import cfg, tasks
from oggm.utils import get_demo_file

# Set up the input data for this example
cfg.initialize()
cfg.PATHS['working_dir'] = oggm.utils.get_temp_dir('oggmcontrib_inv')
cfg.PATHS['dem_file'] = get_demo_file('srtm_oetztal.tif')
cfg.set_intersects_db(get_demo_file('rgi_intersect_oetztal.shp'))

# Glacier directory for Hintereisferner in Austria
entity = gpd.read_file(get_demo_file('Hintereisferner_RGI5.shp')).iloc[0]
gdir = oggm.GlacierDirectory(entity)

# The usual OGGM preprecessing
tasks.define_glacier_region(gdir, entity=entity)
tasks.glacier_masks(gdir)
Example #5
0
    def test_add_consensus(self, class_case_dir, monkeypatch):

        # Init
        cfg.initialize()
        cfg.PARAMS['use_intersects'] = False
        cfg.PATHS['working_dir'] = class_case_dir
        cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif')

        entity = gpd.read_file(get_demo_file('Hintereisferner_RGI5.shp'))
        entity['RGIId'] = 'RGI60-11.00897'
        gdir = workflow.init_glacier_directories(entity)[0]
        tasks.define_glacier_region(gdir)
        tasks.glacier_masks(gdir)

        ft = utils.get_demo_file('RGI60-11.00897_thickness.tif')
        monkeypatch.setattr(utils, 'file_downloader', lambda x: ft)
        bedtopo.add_consensus_thickness(gdir)

        # Check with rasterio
        cfg.add_to_basenames('consensus', 'consensus.tif')
        gis.rasterio_to_gdir(gdir, ft, 'consensus', resampling='bilinear')

        with xr.open_dataset(gdir.get_filepath('gridded_data')) as ds:
            mine = ds.consensus_ice_thickness

        with xr.open_rasterio(gdir.get_filepath('consensus')) as ds:
            ref = ds.isel(band=0)

        # Check area
        my_area = np.sum(np.isfinite(mine.data)) * gdir.grid.dx**2
        np.testing.assert_allclose(my_area, gdir.rgi_area_m2, rtol=0.07)

        rio_area = np.sum(ref.data > 0) * gdir.grid.dx**2
        np.testing.assert_allclose(rio_area, gdir.rgi_area_m2, rtol=0.15)
        np.testing.assert_allclose(my_area, rio_area, rtol=0.15)

        # They are not same:
        # - interpolation not 1to1 same especially at borders
        # - we preserve total volume
        np.testing.assert_allclose(mine.sum(), ref.sum(), rtol=0.01)
        assert utils.rmsd(ref, mine) < 2

        # Check vol
        cdf = pd.read_hdf(utils.get_demo_file('rgi62_itmix_df.h5'))
        ref_vol = cdf.loc[gdir.rgi_id].vol_itmix_m3
        my_vol = mine.sum() * gdir.grid.dx**2
        np.testing.assert_allclose(my_vol, ref_vol)

        # Now check the rest of the workflow
        # Check that no error when var not there
        vn = 'consensus_ice_thickness'
        centerlines.elevation_band_flowline(gdir, bin_variables=[vn, 'foo'])

        # Check vol
        df = pd.read_csv(gdir.get_filepath('elevation_band_flowline'),
                         index_col=0)
        my_vol = (df[vn] * df['area']).sum()
        np.testing.assert_allclose(my_vol, ref_vol)

        centerlines.fixed_dx_elevation_band_flowline(gdir,
                                                     bin_variables=[vn, 'foo'])
        fdf = pd.read_csv(gdir.get_filepath('elevation_band_flowline',
                                            filesuffix='_fixed_dx'),
                          index_col=0)

        # Check vol
        my_vol = (fdf[vn] * fdf['area_m2']).sum()
        np.testing.assert_allclose(my_vol, ref_vol)
Example #6
0
    def test_repro_to_glacier(self, class_case_dir, monkeypatch):

        # Init
        cfg.initialize()
        cfg.PATHS['working_dir'] = class_case_dir
        cfg.PARAMS['use_intersects'] = False
        cfg.PATHS['dem_file'] = get_demo_file('dem_Columbia.tif')
        cfg.PARAMS['border'] = 10

        entity = gpd.read_file(get_demo_file('RGI60-01.10689.shp')).iloc[0]
        gdir = oggm.GlacierDirectory(entity)
        tasks.define_glacier_region(gdir)
        tasks.glacier_masks(gdir)

        # use our files
        region_files = {
            'ALA': {
                'vx': get_demo_file('crop_ALA_G0120_0000_vx.tif'),
                'vy': get_demo_file('crop_ALA_G0120_0000_vy.tif')
            }
        }
        monkeypatch.setattr(its_live, 'region_files', region_files)
        monkeypatch.setattr(utils, 'file_downloader', lambda x: x)

        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", category=RuntimeWarning)
            its_live.velocity_to_gdir(gdir)

        with xr.open_dataset(gdir.get_filepath('gridded_data')) as ds:
            mask = ds.glacier_mask.data.astype(bool)
            vx = ds.obs_icevel_x.where(mask).data
            vy = ds.obs_icevel_y.where(mask).data

        vel = np.sqrt(vx**2 + vy**2)
        assert np.nanmax(vel) > 2900
        assert np.nanmin(vel) < 2

        # We reproject with rasterio and check no big diff
        cfg.BASENAMES['its_live_vx'] = ('its_live_vx.tif', '')
        cfg.BASENAMES['its_live_vy'] = ('its_live_vy.tif', '')
        gis.rasterio_to_gdir(gdir,
                             region_files['ALA']['vx'],
                             'its_live_vx',
                             resampling='bilinear')
        gis.rasterio_to_gdir(gdir,
                             region_files['ALA']['vy'],
                             'its_live_vy',
                             resampling='bilinear')

        with xr.open_rasterio(gdir.get_filepath('its_live_vx')) as da:
            _vx = da.where(mask).data.squeeze()
        with xr.open_rasterio(gdir.get_filepath('its_live_vy')) as da:
            _vy = da.where(mask).data.squeeze()

        _vel = np.sqrt(_vx**2 + _vy**2)
        np.testing.assert_allclose(utils.rmsd(vel[mask], _vel[mask]),
                                   0,
                                   atol=40)
        np.testing.assert_allclose(utils.md(vel[mask], _vel[mask]), 0, atol=8)

        if DO_PLOT:
            import matplotlib.pyplot as plt

            smap = salem.Map(gdir.grid.center_grid, countries=False)
            smap.set_shapefile(gdir.read_shapefile('outlines'))

            with warnings.catch_warnings():
                warnings.filterwarnings('ignore', category=RuntimeWarning)
                smap.set_topography(gdir.get_filepath('dem'))

            vel = np.sqrt(vx**2 + vy**2)
            smap.set_data(vel)
            smap.set_plot_params(cmap='Blues', vmin=None, vmax=None)

            xx, yy = gdir.grid.center_grid.xy_coordinates
            xx, yy = smap.grid.transform(xx, yy, crs=gdir.grid.proj)

            yy = yy[2::5, 2::5]
            xx = xx[2::5, 2::5]
            vx = vx[2::5, 2::5]
            vy = vy[2::5, 2::5]

            f, ax = plt.subplots()
            smap.visualize(ax=ax,
                           title='ITS_LIVE velocity',
                           cbar_title='m yr-1')
            ax.quiver(xx, yy, vx, vy)
            plt.show()
Example #7
0
from oggm.utils import get_demo_file
from oggm.core.preprocessing.climate import mb_yearly_climate_on_glacier, \
    t_star_from_refmb

cfg.initialize()
cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif')
cfg.PATHS['wgms_rgi_links'] = get_demo_file('RGI_WGMS_oetztal.csv')
pcp_fac = 2.6
cfg.PARAMS['prcp_scaling_factor'] = pcp_fac

base_dir = os.path.join(os.path.expanduser('~'), 'Climate')
entity = gpd.read_file(get_demo_file('Hintereisferner.shp')).iloc[0]
gdir = oggm.GlacierDirectory(entity, base_dir=base_dir)

tasks.define_glacier_region(gdir, entity=entity)
tasks.glacier_masks(gdir)
tasks.compute_centerlines(gdir)
tasks.compute_centerlines(gdir)

tasks.initialize_flowlines(gdir)
tasks.catchment_area(gdir)
tasks.catchment_width_geom(gdir)
tasks.catchment_width_correction(gdir)
cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc')
tasks.process_custom_climate_data(gdir)
tasks.mu_candidates(gdir)

# For plots
mu_yr_clim = gdir.read_pickle('mu_candidates')[pcp_fac]
mbdf = gdir.get_ref_mb_data()
years, temp_yr, prcp_yr = mb_yearly_climate_on_glacier(gdir, pcp_fac, div_id=0)
Example #8
0
    def setup_cache(self):

        setattr(full_workflow.setup_cache, "timeout", 360)

        utils.mkdir(self.testdir, reset=True)
        self.cfg_init()

        entity = gpd.read_file(get_demo_file('01_rgi60_Columbia.shp')).iloc[0]
        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)

        tasks.define_glacier_region(gdir, entity=entity)
        tasks.glacier_masks(gdir)
        tasks.compute_centerlines(gdir)
        tasks.initialize_flowlines(gdir)
        tasks.compute_downstream_line(gdir)
        tasks.compute_downstream_bedshape(gdir)
        tasks.catchment_area(gdir)
        tasks.catchment_intersections(gdir)
        tasks.catchment_width_geom(gdir)
        tasks.catchment_width_correction(gdir)
        climate.process_dummy_cru_file(gdir, seed=0)

        rho = cfg.PARAMS['ice_density']
        i = 0
        calving_flux = []
        mu_star = []
        ite = []
        cfg.PARAMS['clip_mu_star'] = False
        cfg.PARAMS['min_mu_star'] = 0  # default is now 1
        while i < 12:

            # Calculates a calving flux from model output
            if i == 0:
                # First call we set to zero (not very necessary,
                # this first loop could be removed)
                f_calving = 0
            elif i == 1:
                # Second call we set a very small positive calving
                f_calving = utils.calving_flux_from_depth(gdir, water_depth=1)
            elif cfg.PARAMS['clip_mu_star']:
                # If we have to clip mu the calving becomes the real flux
                fl = gdir.read_pickle('inversion_flowlines')[-1]
                f_calving = fl.flux[-1] * (gdir.grid.dx**2) * 1e-9 / rho
            else:
                # Otherwise it is parameterized
                f_calving = utils.calving_flux_from_depth(gdir)

            # Give it back to the inversion and recompute
            gdir.inversion_calving_rate = f_calving

            # At this step we might raise a MassBalanceCalibrationError
            mu_is_zero = False
            try:
                climate.local_t_star(gdir)
                df = gdir.read_json('local_mustar')
            except MassBalanceCalibrationError as e:
                assert 'mu* out of specified bounds' in str(e)
                # When this happens we clip mu* to zero and store the
                # bad value (just for plotting)
                cfg.PARAMS['clip_mu_star'] = True
                df = gdir.read_json('local_mustar')
                df['mu_star_glacierwide'] = float(str(e).split(':')[-1])
                climate.local_t_star(gdir)

            climate.mu_star_calibration(gdir)
            tasks.prepare_for_inversion(gdir, add_debug_var=True)
            v_inv, _ = tasks.mass_conservation_inversion(gdir)

            # Store the data
            calving_flux = np.append(calving_flux, f_calving)
            mu_star = np.append(mu_star, df['mu_star_glacierwide'])
            ite = np.append(ite, i)

            # Do we have to do another_loop?
            if i > 0:
                avg_one = np.mean(calving_flux[-4:])
                avg_two = np.mean(calving_flux[-5:-1])
                difference = abs(avg_two - avg_one)
                conv = (difference < 0.05 * avg_two or calving_flux[-1] == 0
                        or calving_flux[-1] == calving_flux[-2])
                if mu_is_zero or conv:
                    break
            i += 1

        assert i < 8
        assert calving_flux[-1] < np.max(calving_flux)
        assert calving_flux[-1] > 2
        assert mu_star[-1] == 0

        mbmod = massbalance.MultipleFlowlineMassBalance
        mb = mbmod(gdir,
                   use_inversion_flowlines=True,
                   mb_model_class=massbalance.ConstantMassBalance,
                   bias=0)
        flux_mb = (mb.get_specific_mb() * gdir.rgi_area_m2) * 1e-9 / rho
        np.testing.assert_allclose(flux_mb, calving_flux[-1], atol=0.001)

        return calving_flux, mu_star
Example #9
0
    cfg.PARAMS['fixed_dx'] = 40
    cfg.PARAMS['border'] = 10

    entity = gpd.read_file(get_demo_file('Hintereisferner.shp'))
    hef = workflow.init_glacier_regions(entity, reset=False)[0]

    input_shp = hef.get_filepath('outlines', div_id=0)
    input_dem = hef.get_filepath('dem', div_id=0)

    # filter options
    f_area = False
    f_alt_range = True
    f_perc_alt_range = True

    # set paths to python 2.7 and to the partitioning package

    python = 'path to python 2.7'
    project = 'path to the partitioning package'

    script = os.path.join(project, 'partitioning/examples/run_divides.py')
    os.system(python + ' ' + script + ' ' + input_shp + ' ' + input_dem + ' ' +
              str(f_area) + ' ' + str(f_alt_range) + ' ' +
              str(f_perc_alt_range))

    print('Hintereisferner is divided into', hef.n_divides, 'parts.')

    tasks.glacier_masks(hef)
    tasks.compute_centerlines(hef)
    graphics.plot_centerlines(hef)
    plt.show()