Example #1
0
def test_makedirs(tmp_path):
    '''
    Test of utils.makedirs() function
    '''
    utils.mkdirs(tmp_path)

    assert os.path.exists(tmp_path)
Example #2
0
def test_constant_demographics_TPI():
    '''
    This tests solves the model under the assumption of constant
    demographics, a balanced budget, and tax functions that do not vary
    over time.
    In this case, given how initial guesss for the time
    path are made, the time path should be solved for on the first
    iteration and the values all along the time path should equal their
    steady-state values.
    '''
    output_base = "./OUTPUT"
    baseline_dir = "./OUTPUT"
    user_params = {
        'constant_demographics': True,
        'budget_balance': True,
        'zero_taxes': True,
        'maxiter': 2
    }
    # Create output directory structure
    ss_dir = os.path.join(output_base, "SS")
    tpi_dir = os.path.join(output_base, "TPI")
    dirs = [ss_dir, tpi_dir]
    for _dir in dirs:
        try:
            print("making dir: ", _dir)
            os.makedirs(_dir)
        except OSError as oe:
            pass
    spec = Specifications(run_micro=False,
                          output_base=output_base,
                          baseline_dir=baseline_dir,
                          test=False,
                          time_path=True,
                          baseline=True,
                          reform={},
                          guid='')
    spec.update_specifications(user_params)
    print('path for tax functions: ', spec.output_base)
    spec.get_tax_function_parameters(None, False)
    # Run SS
    ss_outputs = SS.run_SS(spec, None)
    # save SS results
    utils.mkdirs(os.path.join(baseline_dir, "SS"))
    ss_dir = os.path.join(baseline_dir, "SS/SS_vars.pkl")
    pickle.dump(ss_outputs, open(ss_dir, "wb"))
    # Save pickle with parameter values for the run
    param_dir = os.path.join(baseline_dir, "model_params.pkl")
    pickle.dump(spec, open(param_dir, "wb"))
    tpi_output = TPI.run_TPI(spec, None)
    print(
        'Max diff btwn SS and TP bsplus1 = ',
        np.absolute(tpi_output['bmat_splus1'][:spec.T, :, :] -
                    ss_outputs['bssmat_splus1']).max())
    print('Max diff btwn SS and TP Y = ',
          np.absolute(tpi_output['Y'][:spec.T] - ss_outputs['Yss']).max())
    assert (np.allclose(tpi_output['bmat_splus1'][:spec.T, :, :],
                        ss_outputs['bssmat_splus1']))
Example #3
0
def test_run_TPI(baseline, param_updates, filename, tmp_path, dask_client):
    '''
    Test TPI.run_TPI function.  Provide inputs to function and
    ensure that output returned matches what it has been before.
    '''
    baseline_dir = os.path.join(CUR_PATH, 'baseline')
    if baseline:
        output_base = baseline_dir
    else:
        output_base = os.path.join(CUR_PATH, 'reform')
    p = Specifications(baseline=baseline,
                       baseline_dir=baseline_dir,
                       output_base=output_base,
                       test=True,
                       client=dask_client,
                       num_workers=NUM_WORKERS)
    p.update_specifications(param_updates)
    p.maxiter = 2  # this test runs through just two iterations
    p.get_tax_function_parameters(None,
                                  run_micro=False,
                                  tax_func_path=os.path.join(
                                      CUR_PATH, '..', 'data', 'tax_functions',
                                      'TxFuncEst_baseline_CPS.pkl'))

    # Need to run SS first to get results
    SS.ENFORCE_SOLUTION_CHECKS = False
    ss_outputs = SS.run_SS(p, None)

    if p.baseline:
        utils.mkdirs(os.path.join(p.baseline_dir, "SS"))
        ss_dir = os.path.join(p.baseline_dir, "SS", "SS_vars.pkl")
        with open(ss_dir, "wb") as f:
            pickle.dump(ss_outputs, f)
    else:
        utils.mkdirs(os.path.join(p.output_base, "SS"))
        ss_dir = os.path.join(p.output_base, "SS", "SS_vars.pkl")
        with open(ss_dir, "wb") as f:
            pickle.dump(ss_outputs, f)

    TPI.ENFORCE_SOLUTION_CHECKS = False
    test_dict = TPI.run_TPI(p, None)
    expected_dict = utils.safe_read_pickle(filename)

    for k, v in expected_dict.items():
        try:
            assert (np.allclose(test_dict[k][:p.T],
                                v[:p.T],
                                rtol=1e-04,
                                atol=1e-04))
        except ValueError:
            assert (np.allclose(test_dict[k][:p.T, :, :],
                                v[:p.T, :, :],
                                rtol=1e-04,
                                atol=1e-04))
Example #4
0
def test_constant_demographics_TPI(dask_client):
    '''
    This tests solves the model under the assumption of constant
    demographics, a balanced budget, and tax functions that do not vary
    over time.
    In this case, given how initial guesss for the time
    path are made, the time path should be solved for on the first
    iteration and the values all along the time path should equal their
    steady-state values.
    '''
    # Create output directory structure
    spec = Specifications(run_micro=False,
                          output_base=OUTPUT_DIR,
                          baseline_dir=OUTPUT_DIR,
                          test=False,
                          time_path=True,
                          baseline=True,
                          iit_reform={},
                          guid='',
                          client=dask_client,
                          num_workers=NUM_WORKERS)
    og_spec = {
        'constant_demographics': True,
        'budget_balance': True,
        'zero_taxes': True,
        'maxiter': 2,
        'r_gov_shift': 0.0,
        'zeta_D': [0.0, 0.0],
        'zeta_K': [0.0, 0.0],
        'debt_ratio_ss': 1.0,
        'initial_foreign_debt_ratio': 0.0,
        'start_year': 2019,
        'cit_rate': [0.0],
        'PIA_rate_bkt_1': 0.0,
        'PIA_rate_bkt_2': 0.0,
        'PIA_rate_bkt_3': 0.0,
        'eta':
        (spec.omega_SS.reshape(spec.S, 1) * spec.lambdas.reshape(1, spec.J))
    }
    spec.update_specifications(og_spec)
    spec.get_tax_function_parameters(None, False, tax_func_path=TAX_FUNC_PATH)
    # Run SS
    ss_outputs = SS.run_SS(spec, None)
    # save SS results
    utils.mkdirs(os.path.join(OUTPUT_DIR, "SS"))
    ss_dir = os.path.join(OUTPUT_DIR, "SS", "SS_vars.pkl")
    with open(ss_dir, "wb") as f:
        pickle.dump(ss_outputs, f)
    # Run TPI
    tpi_output = TPI.run_TPI(spec, None)
    assert (np.allclose(tpi_output['bmat_splus1'][:spec.T, :, :],
                        ss_outputs['bssmat_splus1']))
Example #5
0
def test_constant_demographics_TPI():
    '''
    This tests solves the model under the assumption of constant
    demographics, a balanced budget, and tax functions that do not vary
    over time.
    In this case, given how initial guesss for the time
    path are made, the time path should be solved for on the first
    iteration and the values all along the time path should equal their
    steady-state values.
    '''
    output_base = "./OUTPUT"
    baseline_dir = "./OUTPUT"
    user_params = {'constant_demographics': True,
                   'budget_balance': True,
                   'zero_taxes': True,
                   'maxiter': 2}
    # Create output directory structure
    ss_dir = os.path.join(output_base, "SS")
    tpi_dir = os.path.join(output_base, "TPI")
    dirs = [ss_dir, tpi_dir]
    for _dir in dirs:
        try:
            print("making dir: ", _dir)
            os.makedirs(_dir)
        except OSError as oe:
            pass
    spec = Specifications(run_micro=False, output_base=output_base,
                          baseline_dir=baseline_dir, test=False,
                          time_path=True, baseline=True, reform={},
                          guid='')
    spec.update_specifications(user_params)
    print('path for tax functions: ', spec.output_base)
    spec.get_tax_function_parameters(None, False)
    # Run SS
    ss_outputs = SS.run_SS(spec, None)
    # save SS results
    utils.mkdirs(os.path.join(baseline_dir, "SS"))
    ss_dir = os.path.join(baseline_dir, "SS/SS_vars.pkl")
    pickle.dump(ss_outputs, open(ss_dir, "wb"))
    # Save pickle with parameter values for the run
    param_dir = os.path.join(baseline_dir, "model_params.pkl")
    pickle.dump(spec, open(param_dir, "wb"))
    tpi_output = TPI.run_TPI(spec, None)
    print('Max diff btwn SS and TP bsplus1 = ',
          np.absolute(tpi_output['bmat_splus1'][:spec.T, :, :] -
                      ss_outputs['bssmat_splus1']).max())
    print('Max diff btwn SS and TP Y = ',
          np.absolute(tpi_output['Y'][:spec.T] -
                      ss_outputs['Yss']).max())
    assert(np.allclose(tpi_output['bmat_splus1'][:spec.T, :, :],
                       ss_outputs['bssmat_splus1']))
Example #6
0
def test_constant_demographics_TPI():
    '''
    This tests solves the model under the assumption of constant
    demographics, a balanced budget, and tax functions that do not vary
    over time.
    In this case, given how initial guesss for the time
    path are made, the time path should be solved for on the first
    iteration and the values all along the time path should equal their
    steady-state values.
    '''
    output_base = os.path.join(CUR_PATH, 'OUTPUT')
    baseline_dir = output_base
    # Create output directory structure
    ss_dir = os.path.join(output_base, "SS")
    tpi_dir = os.path.join(output_base, "TPI")
    dirs = [ss_dir, tpi_dir]
    for _dir in dirs:
        try:
            print("making dir: ", _dir)
            os.makedirs(_dir)
        except OSError:
            pass
    spec = Specifications(run_micro=False,
                          output_base=output_base,
                          baseline_dir=baseline_dir,
                          test=False,
                          time_path=True,
                          baseline=True,
                          iit_reform={},
                          guid='')
    og_spec = {
        'constant_demographics': True,
        'budget_balance': True,
        'zero_taxes': True,
        'maxiter': 2,
        'eta':
        (spec.omega_SS.reshape(spec.S, 1) * spec.lambdas.reshape(1, spec.J))
    }
    spec.update_specifications(og_spec)
    spec.get_tax_function_parameters(None, False)
    # Run SS
    ss_outputs = SS.run_SS(spec, None)
    # save SS results
    utils.mkdirs(os.path.join(baseline_dir, "SS"))
    ss_dir = os.path.join(baseline_dir, "SS/SS_vars.pkl")
    pickle.dump(ss_outputs, open(ss_dir, "wb"))
    # Run TPI
    tpi_output = TPI.run_TPI(spec, None)
    assert (np.allclose(tpi_output['bmat_splus1'][:spec.T, :, :],
                        ss_outputs['bssmat_splus1']))
Example #7
0
def test_constant_demographics_TPI_small_open():
    '''
    This tests solves the model under the assumption of constant
    demographics, a balanced budget, and tax functions that do not vary
    over time, as well as with a small open economy assumption.
    '''
    # Create output directory structure
    spec = Specifications(run_micro=False,
                          output_base=OUTPUT_DIR,
                          baseline_dir=OUTPUT_DIR,
                          test=False,
                          time_path=True,
                          baseline=True,
                          iit_reform={},
                          guid='')
    og_spec = {
        'constant_demographics': True,
        'budget_balance': True,
        'zero_taxes': True,
        'maxiter': 2,
        'r_gov_shift': 0.0,
        'zeta_D': [0.0, 0.0],
        'zeta_K': [1.0],
        'debt_ratio_ss': 1.0,
        'initial_foreign_debt_ratio': 0.0,
        'start_year': 2019,
        'cit_rate': [0.0],
        'PIA_rate_bkt_1': 0.0,
        'PIA_rate_bkt_2': 0.0,
        'PIA_rate_bkt_3': 0.0,
        'eta':
        (spec.omega_SS.reshape(spec.S, 1) * spec.lambdas.reshape(1, spec.J))
    }
    spec.update_specifications(og_spec)
    spec.get_tax_function_parameters(None, False, tax_func_path=TAX_FUNC_PATH)
    # Run SS
    ss_outputs = SS.run_SS(spec, None)
    # save SS results
    utils.mkdirs(os.path.join(OUTPUT_DIR, "SS"))
    ss_dir = os.path.join(OUTPUT_DIR, "SS", "SS_vars.pkl")
    with open(ss_dir, "wb") as f:
        pickle.dump(ss_outputs, f)
    # Run TPI
    tpi_output = TPI.run_TPI(spec, None)
    assert (np.allclose(tpi_output['bmat_splus1'][:spec.T, :, :],
                        ss_outputs['bssmat_splus1']))
Example #8
0
def test_run_TPI():
    # Test TPI.run_TPI function.  Provide inputs to function and
    # ensure that output returned matches what it has been before.
    input_tuple = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data/run_TPI_inputs.pkl'))
    (income_tax_params, tpi_params, iterative_params, small_open_params,
     initial_values, SS_values, fiscal_params, biz_tax_params,
     output_dir, baseline_spending) = input_tuple
    tpi_params = tpi_params + [True]
    initial_values = initial_values + (0.0,)

    p = Specifications()
    (J, S, T, BW, p.beta, p.sigma, p.alpha, p.gamma, p.epsilon,
     Z, p.delta, p.ltilde, p.nu, p.g_y, p.g_n, tau_b, delta_tau,
     tau_payroll, tau_bq, p.rho, p.omega, N_tilde, lambdas,
     p.imm_rates, p.e, retire, p.mean_income_data, factor, h_wealth,
     p_wealth, m_wealth, p.b_ellipse, p.upsilon, p.chi_b, p.chi_n,
     theta, p.baseline) = tpi_params

    new_param_values = {
        'J': J,
        'S': S,
        'T': T
    }
    # update parameters instance with new values for test
    p.update_specifications(new_param_values, raise_errors=False)
    (J, S, T, BW, p.beta, p.sigma, p.alpha, p.gamma, p.epsilon,
     Z, p.delta, p.ltilde, p.nu, p.g_y, p.g_n, tau_b, delta_tau,
     tau_payroll, tau_bq, p.rho, p.omega, N_tilde, lambdas,
     p.imm_rates, p.e, retire, p.mean_income_data, factor, h_wealth,
     p_wealth, m_wealth, p.b_ellipse, p.upsilon, p.chi_b, p.chi_n,
     theta, p.baseline) = tpi_params
    p.Z = np.ones(p.T + p.S) * Z
    p.tau_bq = np.ones(p.T + p.S) * 0.0
    p.tau_payroll = np.ones(p.T + p.S) * tau_payroll
    p.tau_b = np.ones(p.T + p.S) * tau_b
    p.delta_tau = np.ones(p.T + p.S) * delta_tau
    p.h_wealth = np.ones(p.T + p.S) * h_wealth
    p.p_wealth = np.ones(p.T + p.S) * p_wealth
    p.m_wealth = np.ones(p.T + p.S) * m_wealth
    p.retire = (np.ones(p.T + p.S) * retire).astype(int)
    p.small_open, ss_firm_r, ss_hh_r = small_open_params
    p.ss_firm_r = np.ones(p.T + p.S) * ss_firm_r
    p.ss_hh_r = np.ones(p.T + p.S) * ss_hh_r
    p.maxiter, p.mindist_SS, p.mindist_TPI = iterative_params
    (p.budget_balance, alpha_T, alpha_G, p.tG1, p.tG2, p.rho_G,
     p.debt_ratio_ss) = fiscal_params
    p.alpha_T = np.concatenate((alpha_T, np.ones(40) * alpha_T[-1]))
    p.alpha_G = np.concatenate((alpha_G, np.ones(40) * alpha_G[-1]))
    (tau_b, delta_tau) = biz_tax_params
    p.tau_b = np.ones(p.T + p.S) * tau_b
    p.delta_tau = np.ones(p.T + p.S) * delta_tau
    p.analytical_mtrs, etr_params, mtrx_params, mtry_params =\
        income_tax_params
    p.etr_params = np.transpose(etr_params, (1, 0, 2))[:p.T, :, :]
    p.mtrx_params = np.transpose(mtrx_params, (1, 0, 2))[:p.T, :, :]
    p.mtry_params = np.transpose(mtry_params, (1, 0, 2))[:p.T, :, :]
    p.lambdas = lambdas.reshape(p.J, 1)
    p.output = output_dir
    p.baseline_spending = baseline_spending
    p.num_workers = 1
    (K0, b_sinit, b_splus1init, factor, initial_b, initial_n,
     p.omega_S_preTP, initial_debt, D0) = initial_values

    # Need to run SS first to get results
    ss_outputs = SS.run_SS(p, None)

    if p.baseline:
        utils.mkdirs(os.path.join(p.baseline_dir, "SS"))
        ss_dir = os.path.join(p.baseline_dir, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
    else:
        utils.mkdirs(os.path.join(p.output_base, "SS"))
        ss_dir = os.path.join(p.output_base, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))

    test_dict = TPI.run_TPI(p, None)

    expected_dict = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data/run_TPI_outputs.pkl'))

    # delete values key-value pairs that are not in both dicts
    del test_dict['etr_path'], test_dict['mtrx_path'], test_dict['mtry_path']
    del test_dict['bmat_s']
    test_dict['b_mat'] = test_dict.pop('bmat_splus1')
    test_dict['REVENUE'] = test_dict.pop('total_revenue')
    test_dict['IITpayroll_revenue'] = (test_dict['REVENUE'][:160] -
                                       test_dict['business_revenue'])
    del test_dict['T_P'], test_dict['T_BQ'], test_dict['T_W']
    del test_dict['resource_constraint_error'], test_dict['T_C']
    del test_dict['r_gov'], test_dict['r_hh']

    for k, v in expected_dict.items():
        try:
            assert(np.allclose(test_dict[k], v, rtol=1e-04, atol=1e-04))
        except ValueError:
            assert(np.allclose(test_dict[k], v[:p.T, :, :], rtol=1e-04,
                               atol=1e-04))
Example #9
0
def plot_income_data(ages,
                     abil_midp,
                     abil_pcts,
                     emat,
                     output_dir=None,
                     filesuffix=""):
    '''
    Plot income profiles from models estimated from data.

    Args:

    Returns:

    '''
    '''
    This function graphs ability matrix in 3D, 2D, log, and nolog

    Args:
        ages (Numpy array) ages represented in sample, length S
        abil_midp (Numpy array): midpoints of income percentile bins in
            each ability group
        abil_pcts (Numpy array): percent of population in each lifetime
            income group, length J
        emat (Numpy array): effective labor units by age and lifetime
            income group, size SxJ
        filesuffix (str): suffix to be added to plot files

    Returns:
        None

    '''
    J = abil_midp.shape[0]
    abil_mesh, age_mesh = np.meshgrid(abil_midp, ages)
    cmap1 = matplotlib.cm.get_cmap('summer')
    if output_dir:
        # Make sure that directory is created
        utils.mkdirs(output_dir)
        if J == 1:
            # Plot of 2D, J=1 in levels
            plt.figure()
            plt.plot(ages, emat)
            filename = "ability_2D_lev" + filesuffix
            fullpath = os.path.join(output_dir, filename)
            plt.savefig(fullpath)
            plt.close()

            # Plot of 2D, J=1 in logs
            plt.figure()
            plt.plot(ages, np.log(emat))
            filename = "ability_2D_log" + filesuffix
            fullpath = os.path.join(output_dir, filename)
            plt.savefig(fullpath)
            plt.close()
        else:
            # Plot of 3D, J>1 in levels
            fig10 = plt.figure()
            ax10 = fig10.gca(projection='3d')
            ax10.plot_surface(age_mesh,
                              abil_mesh,
                              emat,
                              rstride=8,
                              cstride=1,
                              cmap=cmap1)
            ax10.set_xlabel(r'age-$s$')
            ax10.set_ylabel(r'ability type -$j$')
            ax10.set_zlabel(r'ability $e_{j,s}$')
            filename = "ability_3D_lev" + filesuffix
            fullpath = os.path.join(output_dir, filename)
            plt.savefig(fullpath)
            plt.close()

            # Plot of 3D, J>1 in logs
            fig11 = plt.figure()
            ax11 = fig11.gca(projection='3d')
            ax11.plot_surface(age_mesh,
                              abil_mesh,
                              np.log(emat),
                              rstride=8,
                              cstride=1,
                              cmap=cmap1)
            ax11.set_xlabel(r'age-$s$')
            ax11.set_ylabel(r'ability type -$j$')
            ax11.set_zlabel(r'log ability $log(e_{j,s})$')
            filename = "ability_3D_log" + filesuffix
            fullpath = os.path.join(output_dir, filename)
            plt.savefig(fullpath)
            plt.close()

            if J <= 10:  # Restricted because of line and marker types
                # Plot of 2D lines from 3D version in logs
                ax = plt.subplot(111)
                linestyles = np.array([
                    "-",
                    "--",
                    "-.",
                    ":",
                ])
                markers = np.array(["x", "v", "o", "d", ">", "|"])
                pct_lb = 0
                for j in range(J):
                    this_label = (
                        str(int(np.rint(pct_lb))) + " - " +
                        str(int(np.rint(pct_lb + 100 * abil_pcts[j]))) + "%")
                    pct_lb += 100 * abil_pcts[j]
                    if j <= 3:
                        ax.plot(ages,
                                np.log(emat[:, j]),
                                label=this_label,
                                linestyle=linestyles[j],
                                color='black')
                    elif j > 3:
                        ax.plot(ages,
                                np.log(emat[:, j]),
                                label=this_label,
                                marker=markers[j - 4],
                                color='black')
                ax.axvline(x=80, color='black', linestyle='--')
                box = ax.get_position()
                ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
                ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
                ax.set_xlabel(r'age-$s$')
                ax.set_ylabel(r'log ability $log(e_{j,s})$')
                filename = "ability_2D_log" + filesuffix
                fullpath = os.path.join(output_dir, filename)
                plt.savefig(fullpath)
                plt.close()
    else:
        if J <= 10:  # Restricted because of line and marker types
            # Plot of 2D lines from 3D version in logs
            ax = plt.subplot(111)
            linestyles = np.array([
                "-",
                "--",
                "-.",
                ":",
            ])
            markers = np.array(["x", "v", "o", "d", ">", "|"])
            pct_lb = 0
            for j in range(J):
                this_label = (str(int(np.rint(pct_lb))) + " - " +
                              str(int(np.rint(pct_lb + 100 * abil_pcts[j]))) +
                              "%")
                pct_lb += 100 * abil_pcts[j]
                if j <= 3:
                    ax.plot(ages,
                            np.log(emat[:, j]),
                            label=this_label,
                            linestyle=linestyles[j],
                            color='black')
                elif j > 3:
                    ax.plot(ages,
                            np.log(emat[:, j]),
                            label=this_label,
                            marker=markers[j - 4],
                            color='black')
            ax.axvline(x=80, color='black', linestyle='--')
            box = ax.get_position()
            ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
            ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
            ax.set_xlabel(r'age-$s$')
            ax.set_ylabel(r'log ability $log(e_{j,s})$')

            return ax
Example #10
0
def runner_SS(output_base, baseline_dir, baseline=False,
  analytical_mtrs=False, age_specific=False, reform={}, user_params={},
  guid='', run_micro=True):

    from ogusa import parameters, demographics, income, utils
    from ogusa import txfunc

    tick = time.time()

    #Create output directory structure
    saved_moments_dir = os.path.join(output_base, "Saved_moments")
    ss_dir = os.path.join(output_base, "SS")
    tpi_dir = os.path.join(output_base, "TPI")
    dirs = [saved_moments_dir, ss_dir, tpi_dir]
    for _dir in dirs:
        try:
            print "making dir: ", _dir
            os.makedirs(_dir)
        except OSError as oe:
            pass

    if run_micro:
        txfunc.get_tax_func_estimate(baseline=baseline, analytical_mtrs=analytical_mtrs, age_specific=age_specific,
                                     start_year=user_params['start_year'], reform=reform, guid=guid)
    print ("in runner, baseline is ", baseline)
    run_params = ogusa.parameters.get_parameters(baseline=baseline, guid=guid)
    run_params['analytical_mtrs'] = analytical_mtrs

    # Modify ogusa parameters based on user input
    if 'frisch' in user_params:
        print "updating fricsh and associated"
        b_ellipse, upsilon = ogusa.elliptical_u_est.estimation(user_params['frisch'],
                                                               run_params['ltilde'])
        run_params['b_ellipse'] = b_ellipse
        run_params['upsilon'] = upsilon
        run_params.update(user_params)

    # Modify ogusa parameters based on user input
    if 'g_y_annual' in user_params:
        print "updating g_y_annual and associated"
        ending_age = run_params['ending_age']
        starting_age = run_params['starting_age']
        S = run_params['S']
        g_y = (1 + user_params['g_y_annual'])**(float(ending_age - starting_age) / S) - 1
        run_params['g_y'] = g_y
        run_params.update(user_params)

    from ogusa import SS, TPI


    # List of parameter names that will not be changing (unless we decide to
    # change them for a tax experiment)

    param_names = ['S', 'J', 'T', 'BW', 'lambdas', 'starting_age', 'ending_age',
                'beta', 'sigma', 'alpha', 'nu', 'Z', 'delta', 'E',
                'ltilde', 'g_y', 'maxiter', 'mindist_SS', 'mindist_TPI',
                'analytical_mtrs', 'b_ellipse', 'k_ellipse', 'upsilon',
                'chi_b_guess', 'chi_n_guess','etr_params','mtrx_params',
                'mtry_params','tau_payroll', 'tau_bq',
                'retire', 'mean_income_data', 'g_n_vector',
                'h_wealth', 'p_wealth', 'm_wealth',
                'omega', 'g_n_ss', 'omega_SS', 'surv_rate', 'imm_rates', 'e', 'rho', 'omega_S_preTP']


    '''
    ------------------------------------------------------------------------
        Run SS
    ------------------------------------------------------------------------
    '''

    sim_params = {}
    for key in param_names:
        sim_params[key] = run_params[key]

    sim_params['output_dir'] = output_base
    sim_params['run_params'] = run_params

    income_tax_params, ss_params, iterative_params, chi_params= SS.create_steady_state_parameters(**sim_params)

    '''
    ****
    CALL CALIBRATION here if boolean flagged
    ****
    '''
    calibrate_model = False
    if calibrate_model:
        chi_params = calibrate.chi_estimate(income_tax_params, ss_params, iterative_params, chi_params, baseline_dir=baseline_dir)

    ss_outputs = SS.run_SS(income_tax_params, ss_params, iterative_params, chi_params, baseline,
                                     baseline_dir=baseline_dir)

    '''
    ------------------------------------------------------------------------
        Pickle SS results
    ------------------------------------------------------------------------
    '''
    if baseline:
        utils.mkdirs(os.path.join(baseline_dir, "SS"))
        ss_dir = os.path.join(baseline_dir, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
    else:
        utils.mkdirs(os.path.join(output_base, "SS"))
        ss_dir = os.path.join(output_base, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
Example #11
0
def run_TPI(p, client=None):

    # unpack tuples of parameters
    initial_values, SS_values, baseline_values = get_initial_SS_values(p)
    (B0, b_sinit, b_splus1init, factor, initial_b, initial_n,
     D0) = initial_values
    (Kss, Bss, Lss, rss, wss, BQss, T_Hss, total_revenue_ss, bssmat_splus1,
     nssmat, Yss, Gss, theta) = SS_values
    (T_Hbaseline, Gbaseline) = baseline_values

    print('Government spending breakpoints are tG1: ', p.tG1, '; and tG2:',
          p.tG2)

    # Initialize guesses at time paths
    # Make array of initial guesses for labor supply and savings
    domain = np.linspace(0, p.T, p.T)
    domain2 = np.tile(domain.reshape(p.T, 1, 1), (1, p.S, p.J))
    ending_b = bssmat_splus1
    guesses_b = (-1 / (domain2 + 1)) * (ending_b - initial_b) + ending_b
    ending_b_tail = np.tile(ending_b.reshape(1, p.S, p.J), (p.S, 1, 1))
    guesses_b = np.append(guesses_b, ending_b_tail, axis=0)

    domain3 = np.tile(np.linspace(0, 1, p.T).reshape(p.T, 1, 1), (1, p.S, p.J))
    guesses_n = domain3 * (nssmat - initial_n) + initial_n
    ending_n_tail = np.tile(nssmat.reshape(1, p.S, p.J), (p.S, 1, 1))
    guesses_n = np.append(guesses_n, ending_n_tail, axis=0)
    b_mat = guesses_b  # np.zeros((p.T + p.S, p.S, p.J))
    n_mat = guesses_n  # np.zeros((p.T + p.S, p.S, p.J))
    ind = np.arange(p.S)

    L_init = np.ones((p.T + p.S, )) * Lss
    B_init = np.ones((p.T + p.S, )) * Bss
    L_init[:p.T] = aggr.get_L(n_mat[:p.T], p, 'TPI')
    B_init[1:p.T] = aggr.get_K(b_mat[:p.T], p, 'TPI', False)[:p.T - 1]
    B_init[0] = B0

    if not p.small_open:
        if p.budget_balance:
            K_init = B_init
        else:
            K_init = B_init * Kss / Bss
    else:
        K_init = firm.get_K(L_init, p.firm_r, p, 'TPI')

    K = K_init

    L = L_init
    B = B_init
    Y = np.zeros_like(K)
    Y[:p.T] = firm.get_Y(K[:p.T], L[:p.T], p, 'TPI')
    Y[p.T:] = Yss
    r = np.zeros_like(Y)
    if not p.small_open:
        r[:p.T] = firm.get_r(Y[:p.T], K[:p.T], p, 'TPI')
        r[p.T:] = rss
    else:
        r = p.firm_r
    # compute w
    w = np.zeros_like(r)
    w[:p.T] = firm.get_w_from_r(r[:p.T], p, 'TPI')
    w[p.T:] = wss
    r_gov = fiscal.get_r_gov(r, p)
    if p.budget_balance:
        r_hh = r
    else:
        r_hh = aggr.get_r_hh(r, r_gov, K, p.debt_ratio_ss * Y)
    if p.small_open:
        r_hh = p.hh_r

    BQ0 = aggr.get_BQ(r[0], initial_b, None, p, 'SS', True)
    if not p.use_zeta:
        BQ = np.zeros((p.T + p.S, p.J))
        for j in range(p.J):
            BQ[:,
               j] = (list(np.linspace(BQ0[j], BQss[j], p.T)) + [BQss[j]] * p.S)
        BQ = np.array(BQ)
    else:
        BQ = (list(np.linspace(BQ0, BQss, p.T)) + [BQss] * p.S)
        BQ = np.array(BQ)
    if p.budget_balance:
        if np.abs(T_Hss) < 1e-13:
            T_Hss2 = 0.0  # sometimes SS is very small but not zero,
            # even if taxes are zero, this get's rid of the approximation
            # error, which affects the perc changes below
        else:
            T_Hss2 = T_Hss
        T_H = np.ones(p.T + p.S) * T_Hss2
        total_revenue = T_H
        G = np.zeros(p.T + p.S)
    elif not p.baseline_spending:
        T_H = p.alpha_T * Y
    elif p.baseline_spending:
        T_H = T_Hbaseline
        T_H_new = p.T_H  # Need to set T_H_new for later reference
        G = Gbaseline
        G_0 = Gbaseline[0]

    # Initialize some starting value
    if p.budget_balance:
        D = 0.0 * Y
    else:
        D = p.debt_ratio_ss * Y
    TPIiter = 0
    TPIdist = 10
    euler_errors = np.zeros((p.T, 2 * p.S, p.J))
    TPIdist_vec = np.zeros(p.maxiter)

    print('analytical mtrs in tpi = ', p.analytical_mtrs)
    print('tax function type in tpi = ', p.tax_func_type)

    # TPI loop
    while (TPIiter < p.maxiter) and (TPIdist >= p.mindist_TPI):
        r_gov[:p.T] = fiscal.get_r_gov(r[:p.T], p)
        if p.budget_balance:
            r_hh[:p.T] = r[:p.T]
        else:
            K[:p.T] = firm.get_K_from_Y(Y[:p.T], r[:p.T], p, 'TPI')
            r_hh[:p.T] = aggr.get_r_hh(r[:p.T], r_gov[:p.T], K[:p.T], D[:p.T])
        if p.small_open:
            r_hh[:p.T] = p.hh_r[:p.T]

        outer_loop_vars = (r, w, r_hh, BQ, T_H, theta)

        euler_errors = np.zeros((p.T, 2 * p.S, p.J))
        lazy_values = []
        for j in range(p.J):
            guesses = (guesses_b[:, :, j], guesses_n[:, :, j])
            lazy_values.append(
                delayed(inner_loop)(guesses, outer_loop_vars, initial_values,
                                    j, ind, p))
        results = compute(*lazy_values,
                          scheduler=dask.multiprocessing.get,
                          num_workers=p.num_workers)
        for j, result in enumerate(results):
            euler_errors[:, :, j], b_mat[:, :, j], n_mat[:, :, j] = result

        bmat_s = np.zeros((p.T, p.S, p.J))
        bmat_s[0, 1:, :] = initial_b[:-1, :]
        bmat_s[1:, 1:, :] = b_mat[:p.T - 1, :-1, :]
        bmat_splus1 = np.zeros((p.T, p.S, p.J))
        bmat_splus1[:, :, :] = b_mat[:p.T, :, :]

        L[:p.T] = aggr.get_L(n_mat[:p.T], p, 'TPI')
        B[1:p.T] = aggr.get_K(bmat_splus1[:p.T], p, 'TPI', False)[:p.T - 1]
        if np.any(B) < 0:
            print('B has negative elements. B[0:9]:', B[0:9])
            print('B[T-2:T]:', B[p.T - 2, p.T])

        etr_params_4D = np.tile(
            p.etr_params.reshape(p.T, p.S, 1, p.etr_params.shape[2]),
            (1, 1, p.J, 1))
        bqmat = household.get_bq(BQ, None, p, 'TPI')
        tax_mat = tax.total_taxes(r_hh[:p.T], w[:p.T], bmat_s,
                                  n_mat[:p.T, :, :], bqmat[:p.T, :, :], factor,
                                  T_H[:p.T], theta, 0, None, False, 'TPI', p.e,
                                  etr_params_4D, p)
        r_hh_path = utils.to_timepath_shape(r_hh, p)
        wpath = utils.to_timepath_shape(w, p)
        c_mat = household.get_cons(r_hh_path[:p.T, :, :], wpath[:p.T, :, :],
                                   bmat_s, bmat_splus1, n_mat[:p.T, :, :],
                                   bqmat[:p.T, :, :], tax_mat, p.e,
                                   p.tau_c[:p.T, :, :], p)

        if not p.small_open:
            if p.budget_balance:
                K[:p.T] = B[:p.T]
            else:
                if not p.baseline_spending:
                    Y = T_H / p.alpha_T  # maybe unecessary

                    (total_rev, T_Ipath, T_Ppath, T_BQpath, T_Wpath,
                     T_Cpath, business_revenue) = aggr.revenue(
                         r_hh[:p.T], w[:p.T], bmat_s, n_mat[:p.T, :, :],
                         bqmat[:p.T, :, :], c_mat[:p.T, :, :], Y[:p.T],
                         L[:p.T], K[:p.T], factor, theta, etr_params_4D, p,
                         'TPI')
                    total_revenue = np.array(
                        list(total_rev) + [total_revenue_ss] * p.S)

                # set intial debt value
                if p.baseline:
                    D_0 = p.initial_debt_ratio * Y[0]
                else:
                    D_0 = D0
                if not p.baseline_spending:
                    G_0 = p.alpha_G[0] * Y[0]
                dg_fixed_values = (Y, total_revenue, T_H, D_0, G_0)
                Dnew, G = fiscal.D_G_path(r_gov, dg_fixed_values, Gbaseline, p)

                K[:p.T] = B[:p.T] - Dnew[:p.T]
                if np.any(K < 0):
                    print('K has negative elements. Setting them ' +
                          'positive to prevent NAN.')
                    K[:p.T] = np.fmax(K[:p.T], 0.05 * B[:p.T])
        else:
            K[:p.T] = firm.get_K(L[:p.T], p.firm_r[:p.T], p, 'TPI')
        Ynew = firm.get_Y(K[:p.T], L[:p.T], p, 'TPI')
        if not p.small_open:
            rnew = firm.get_r(Ynew[:p.T], K[:p.T], p, 'TPI')
        else:
            rnew = r.copy()
        r_gov_new = fiscal.get_r_gov(rnew, p)
        if p.budget_balance:
            r_hh_new = rnew[:p.T]
        else:
            r_hh_new = aggr.get_r_hh(rnew, r_gov_new, K[:p.T], Dnew[:p.T])
        if p.small_open:
            r_hh_new = p.hh_r[:p.T]
        # compute w
        wnew = firm.get_w_from_r(rnew[:p.T], p, 'TPI')

        b_mat_shift = np.append(np.reshape(initial_b, (1, p.S, p.J)),
                                b_mat[:p.T - 1, :, :],
                                axis=0)
        BQnew = aggr.get_BQ(r_hh_new[:p.T], b_mat_shift, None, p, 'TPI', False)
        bqmat_new = household.get_bq(BQnew, None, p, 'TPI')
        (total_rev, T_Ipath, T_Ppath, T_BQpath,
         T_Wpath, T_Cpath, business_revenue) = aggr.revenue(
             r_hh_new[:p.T], wnew[:p.T], bmat_s, n_mat[:p.T, :, :],
             bqmat_new[:p.T, :, :], c_mat[:p.T, :, :], Ynew[:p.T], L[:p.T],
             K[:p.T], factor, theta, etr_params_4D, p, 'TPI')
        total_revenue = np.array(list(total_rev) + [total_revenue_ss] * p.S)

        if p.budget_balance:
            T_H_new = total_revenue
        elif not p.baseline_spending:
            T_H_new = p.alpha_T[:p.T] * Ynew[:p.T]
        # If baseline_spending==True, no need to update T_H, it's fixed

        if p.small_open and not p.budget_balance:
            # Loop through years to calculate debt and gov't spending.
            # This is done earlier when small_open=False.
            if p.baseline:
                D_0 = p.initial_debt_ratio * Y[0]
            else:
                D_0 = D0
            if not p.baseline_spending:
                G_0 = p.alpha_G[0] * Ynew[0]
            dg_fixed_values = (Ynew, total_revenue, T_H, D_0, G_0)
            Dnew, G = fiscal.D_G_path(r_gov_new, dg_fixed_values, Gbaseline, p)

        if p.budget_balance:
            Dnew = D

        w[:p.T] = wnew[:p.T]
        r[:p.T] = utils.convex_combo(rnew[:p.T], r[:p.T], p.nu)
        BQ[:p.T] = utils.convex_combo(BQnew[:p.T], BQ[:p.T], p.nu)
        D = Dnew
        Y[:p.T] = utils.convex_combo(Ynew[:p.T], Y[:p.T], p.nu)
        if not p.baseline_spending:
            T_H[:p.T] = utils.convex_combo(T_H_new[:p.T], T_H[:p.T], p.nu)
        guesses_b = utils.convex_combo(b_mat, guesses_b, p.nu)
        guesses_n = utils.convex_combo(n_mat, guesses_n, p.nu)

        print('r diff: ', (rnew[:p.T] - r[:p.T]).max(),
              (rnew[:p.T] - r[:p.T]).min())
        print('BQ diff: ', (BQnew[:p.T] - BQ[:p.T]).max(),
              (BQnew[:p.T] - BQ[:p.T]).min())
        print('T_H diff: ', (T_H_new[:p.T] - T_H[:p.T]).max(),
              (T_H_new[:p.T] - T_H[:p.T]).min())
        print('Y diff: ', (Ynew[:p.T] - Y[:p.T]).max(),
              (Ynew[:p.T] - Y[:p.T]).min())
        if not p.baseline_spending:
            if T_H.all() != 0:
                TPIdist = np.array(
                    list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) + list(
                        utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                    list(utils.pct_diff_func(wnew[:p.T], w[:p.T])) +
                    list(utils.pct_diff_func(T_H_new[:p.T], T_H[:p.T]))).max()
            else:
                TPIdist = np.array(
                    list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) + list(
                        utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                    list(utils.pct_diff_func(wnew[:p.T], w[:p.T])) +
                    list(np.abs(T_H[:p.T]))).max()
        else:
            TPIdist = np.array(
                list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) +
                list(utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                list(utils.pct_diff_func(wnew[:p.T], w[:p.T])) +
                list(utils.pct_diff_func(Ynew[:p.T], Y[:p.T]))).max()

        TPIdist_vec[TPIiter] = TPIdist
        # After T=10, if cycling occurs, drop the value of nu
        # wait til after T=10 or so, because sometimes there is a jump up
        # in the first couple iterations
        # if TPIiter > 10:
        #     if TPIdist_vec[TPIiter] - TPIdist_vec[TPIiter - 1] > 0:
        #         nu /= 2
        #         print 'New Value of nu:', nu
        TPIiter += 1
        print('Iteration:', TPIiter)
        print('\tDistance:', TPIdist)

    # Compute effective and marginal tax rates for all agents
    mtrx_params_4D = np.tile(
        p.mtrx_params.reshape(p.T, p.S, 1, p.mtrx_params.shape[2]),
        (1, 1, p.J, 1))
    mtry_params_4D = np.tile(
        p.mtry_params.reshape(p.T, p.S, 1, p.mtry_params.shape[2]),
        (1, 1, p.J, 1))

    e_3D = np.tile(p.e.reshape(1, p.S, p.J), (p.T, 1, 1))
    mtry_path = tax.MTR_income(r_hh_path[:p.T], wpath[:p.T],
                               bmat_s[:p.T, :, :], n_mat[:p.T, :, :], factor,
                               True, e_3D, etr_params_4D, mtry_params_4D, p)
    mtrx_path = tax.MTR_income(r_hh_path[:p.T], wpath[:p.T],
                               bmat_s[:p.T, :, :], n_mat[:p.T, :, :], factor,
                               False, e_3D, etr_params_4D, mtrx_params_4D, p)
    etr_path = tax.ETR_income(r_hh_path[:p.T], wpath[:p.T], bmat_s[:p.T, :, :],
                              n_mat[:p.T, :, :], factor, e_3D, etr_params_4D,
                              p)

    C = aggr.get_C(c_mat, p, 'TPI')

    if not p.small_open:
        I = aggr.get_I(bmat_splus1[:p.T], K[1:p.T + 1], K[:p.T], p, 'TPI')
        rc_error = Y[:p.T] - C[:p.T] - I[:p.T] - G[:p.T]
    else:
        I = ((1 + np.squeeze(np.hstack(
            (p.g_n[1:p.T], p.g_n_ss)))) * np.exp(p.g_y) * K[1:p.T + 1] -
             (1.0 - p.delta) * K[:p.T])
        BI = aggr.get_I(bmat_splus1[:p.T], B[1:p.T + 1], B[:p.T], p, 'TPI')
        new_borrowing = (D[1:p.T] * (1 + p.g_n[1:p.T]) * np.exp(p.g_y) -
                         D[:p.T - 1])
        rc_error = (Y[:p.T - 1] + new_borrowing -
                    (C[:p.T - 1] + BI[:p.T - 1] + G[:p.T - 1]) +
                    (p.hh_r[:p.T - 1] * B[:p.T - 1] -
                     (p.delta + p.firm_r[:p.T - 1]) * K[:p.T - 1] -
                     p.hh_r[:p.T - 1] * D[:p.T - 1]))

    # Compute total investment (not just domestic)
    I_total = ((1 + p.g_n[:p.T]) * np.exp(p.g_y) * K[1:p.T + 1] -
               (1.0 - p.delta) * K[:p.T])

    rce_max = np.amax(np.abs(rc_error))
    print('Max absolute value resource constraint error:', rce_max)

    print('Checking time path for violations of constraints.')
    for t in range(p.T):
        household.constraint_checker_TPI(b_mat[t], n_mat[t], c_mat[t], t,
                                         p.ltilde)

    eul_savings = euler_errors[:, :p.S, :].max(1).max(1)
    eul_laborleisure = euler_errors[:, p.S:, :].max(1).max(1)

    print('Max Euler error, savings: ', eul_savings)
    print('Max Euler error labor supply: ', eul_laborleisure)
    '''
    ------------------------------------------------------------------------
    Save variables/values so they can be used in other modules
    ------------------------------------------------------------------------
    '''

    output = {
        'Y': Y[:p.T],
        'B': B,
        'K': K,
        'L': L,
        'C': C,
        'I': I,
        'I_total': I_total,
        'BQ': BQ,
        'total_revenue': total_revenue,
        'business_revenue': business_revenue,
        'IITpayroll_revenue': T_Ipath,
        'T_H': T_H,
        'T_P': T_Ppath,
        'T_BQ': T_BQpath,
        'T_W': T_Wpath,
        'T_C': T_Cpath,
        'G': G,
        'D': D,
        'r': r,
        'r_gov': r_gov,
        'r_hh': r_hh,
        'w': w,
        'bmat_splus1': bmat_splus1,
        'bmat_s': bmat_s[:p.T, :, :],
        'n_mat': n_mat[:p.T, :, :],
        'c_path': c_mat,
        'bq_path': bqmat,
        'tax_path': tax_mat,
        'eul_savings': eul_savings,
        'eul_laborleisure': eul_laborleisure,
        'resource_constraint_error': rc_error,
        'etr_path': etr_path,
        'mtrx_path': mtrx_path,
        'mtry_path': mtry_path
    }

    tpi_dir = os.path.join(p.output_base, "TPI")
    utils.mkdirs(tpi_dir)
    tpi_vars = os.path.join(tpi_dir, "TPI_vars.pkl")
    pickle.dump(output, open(tpi_vars, "wb"))

    if np.any(G) < 0:
        print('Government spending is negative along transition path' +
              ' to satisfy budget')

    if (((TPIiter >= p.maxiter) or (np.absolute(TPIdist) > p.mindist_TPI))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found' +
                           ' (TPIdist)')

    if ((np.any(np.absolute(rc_error) >= p.mindist_TPI * 10))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found ' +
                           '(rc_error)')

    if ((np.any(np.absolute(eul_savings) >= p.mindist_TPI) or
         (np.any(np.absolute(eul_laborleisure) > p.mindist_TPI)))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found ' +
                           '(eulers)')

    return output
Example #12
0
def run_TPI(p, client=None):
    '''
    Solve for transition path equilibrium of OG-USA.

    Args:
        p (OG-USA Specifications object): model parameters
        client (Dask client object): client

    Returns:
        output (dictionary): dictionary with transition path solution
            results

    '''
    # unpack tuples of parameters
    initial_values, ss_vars, theta, baseline_values = get_initial_SS_values(p)
    (B0, b_sinit, b_splus1init, factor, initial_b, initial_n) =\
        initial_values
    (TRbaseline, Gbaseline, D0_baseline) = baseline_values

    print('Government spending breakpoints are tG1: ', p.tG1, '; and tG2:',
          p.tG2)

    # Initialize guesses at time paths
    # Make array of initial guesses for labor supply and savings
    guesses_b = utils.get_initial_path(initial_b, ss_vars['bssmat_splus1'], p,
                                       'ratio')
    guesses_n = utils.get_initial_path(initial_n, ss_vars['nssmat'], p,
                                       'ratio')
    b_mat = guesses_b
    n_mat = guesses_n
    ind = np.arange(p.S)

    # Get path for aggregate savings and labor supply`
    L_init = np.ones((p.T + p.S, )) * ss_vars['Lss']
    B_init = np.ones((p.T + p.S, )) * ss_vars['Bss']
    L_init[:p.T] = aggr.get_L(n_mat[:p.T], p, 'TPI')
    B_init[1:p.T] = aggr.get_B(b_mat[:p.T], p, 'TPI', False)[:p.T - 1]
    B_init[0] = B0
    K_init = B_init * ss_vars['Kss'] / ss_vars['Bss']
    K = K_init
    K_d = K_init * ss_vars['K_d_ss'] / ss_vars['Kss']
    K_f = K_init * ss_vars['K_f_ss'] / ss_vars['Kss']
    L = L_init
    B = B_init
    Y = np.zeros_like(K)
    Y[:p.T] = firm.get_Y(K[:p.T], L[:p.T], p, 'TPI')
    Y[p.T:] = ss_vars['Yss']
    r = np.zeros_like(Y)
    r[:p.T] = firm.get_r(Y[:p.T], K[:p.T], p, 'TPI')
    r[p.T:] = ss_vars['rss']
    # For case where economy is small open econ
    r[p.zeta_K == 1] = p.world_int_rate[p.zeta_K == 1]
    # Compute other interest rates
    r_gov = fiscal.get_r_gov(r, p)
    r_hh = aggr.get_r_hh(r, r_gov, K, ss_vars['Dss'])

    # compute w
    w = np.zeros_like(r)
    w[:p.T] = firm.get_w_from_r(r[:p.T], p, 'TPI')
    w[p.T:] = ss_vars['wss']

    # initial guesses at fiscal vars
    if p.budget_balance:
        if np.abs(ss_vars['TR_ss']) < 1e-13:
            TR_ss2 = 0.0  # sometimes SS is very small but not zero,
            # even if taxes are zero, this get's rid of the
            # approximation error, which affects the pct changes below
        else:
            TR_ss2 = ss_vars['TR_ss']
        TR = np.ones(p.T + p.S) * TR_ss2
        total_tax_revenue = TR - ss_vars['agg_pension_outlays']
        G = np.zeros(p.T + p.S)
        D = np.zeros(p.T + p.S)
        D_d = np.zeros(p.T + p.S)
        D_f = np.zeros(p.T + p.S)
    else:
        if p.baseline_spending:
            TR = TRbaseline
            G = Gbaseline
            G[p.T:] = ss_vars['Gss']
        else:
            TR = p.alpha_T * Y
            G = np.ones(p.T + p.S) * ss_vars['Gss']
        D = np.ones(p.T + p.S) * ss_vars['Dss']
        D_d = D * ss_vars['D_d_ss'] / ss_vars['Dss']
        D_f = D * ss_vars['D_f_ss'] / ss_vars['Dss']
    total_tax_revenue = np.ones(p.T + p.S) * ss_vars['total_tax_revenue']

    # Initialize bequests
    BQ0 = aggr.get_BQ(r_hh[0], initial_b, None, p, 'SS', True)
    if not p.use_zeta:
        BQ = np.zeros((p.T + p.S, p.J))
        for j in range(p.J):
            BQ[:, j] = (list(np.linspace(BQ0[j], ss_vars['BQss'][j], p.T)) +
                        [ss_vars['BQss'][j]] * p.S)
        BQ = np.array(BQ)
    else:
        BQ = (list(np.linspace(BQ0, ss_vars['BQss'], p.T)) +
              [ss_vars['BQss']] * p.S)
        BQ = np.array(BQ)

    TPIiter = 0
    TPIdist = 10
    euler_errors = np.zeros((p.T, 2 * p.S, p.J))
    TPIdist_vec = np.zeros(p.maxiter)

    # TPI loop
    while (TPIiter < p.maxiter) and (TPIdist >= p.mindist_TPI):
        r_gov[:p.T] = fiscal.get_r_gov(r[:p.T], p)
        if not p.budget_balance:
            K[:p.T] = firm.get_K_from_Y(Y[:p.T], r[:p.T], p, 'TPI')

        r_hh[:p.T] = aggr.get_r_hh(r[:p.T], r_gov[:p.T], K[:p.T], D[:p.T])

        outer_loop_vars = (r, w, r_hh, BQ, TR, theta)

        euler_errors = np.zeros((p.T, 2 * p.S, p.J))
        lazy_values = []
        for j in range(p.J):
            guesses = (guesses_b[:, :, j], guesses_n[:, :, j])
            lazy_values.append(
                delayed(inner_loop)(guesses, outer_loop_vars, initial_values,
                                    j, ind, p))
        if client:
            futures = client.compute(lazy_values, num_workers=p.num_workers)
            results = client.gather(futures)
        else:
            results = results = compute(*lazy_values,
                                        scheduler=dask.multiprocessing.get,
                                        num_workers=p.num_workers)

        for j, result in enumerate(results):
            euler_errors[:, :, j], b_mat[:, :, j], n_mat[:, :, j] = result

        bmat_s = np.zeros((p.T, p.S, p.J))
        bmat_s[0, 1:, :] = initial_b[:-1, :]
        bmat_s[1:, 1:, :] = b_mat[:p.T - 1, :-1, :]
        bmat_splus1 = np.zeros((p.T, p.S, p.J))
        bmat_splus1[:, :, :] = b_mat[:p.T, :, :]

        etr_params_4D = np.tile(
            p.etr_params.reshape(p.T, p.S, 1, p.etr_params.shape[2]),
            (1, 1, p.J, 1))
        bqmat = household.get_bq(BQ, None, p, 'TPI')
        trmat = household.get_tr(TR, None, p, 'TPI')
        tax_mat = tax.net_taxes(r_hh[:p.T], w[:p.T], bmat_s, n_mat[:p.T, :, :],
                                bqmat[:p.T, :, :], factor, trmat[:p.T, :, :],
                                theta, 0, None, False, 'TPI', p.e,
                                etr_params_4D, p)
        r_hh_path = utils.to_timepath_shape(r_hh)
        wpath = utils.to_timepath_shape(w)
        c_mat = household.get_cons(r_hh_path[:p.T, :, :], wpath[:p.T, :, :],
                                   bmat_s, bmat_splus1, n_mat[:p.T, :, :],
                                   bqmat[:p.T, :, :], tax_mat, p.e,
                                   p.tau_c[:p.T, :, :], p)
        y_before_tax_mat = household.get_y(r_hh_path[:p.T, :, :],
                                           wpath[:p.T, :, :],
                                           bmat_s[:p.T, :, :],
                                           n_mat[:p.T, :, :], p)

        (total_tax_rev, iit_payroll_tax_revenue, agg_pension_outlays,
         bequest_tax_revenue, wealth_tax_revenue, cons_tax_revenue,
         business_tax_revenue, payroll_tax_revenue,
         iit_revenue) = aggr.revenue(r_hh[:p.T], w[:p.T], bmat_s,
                                     n_mat[:p.T, :, :], bqmat[:p.T, :, :],
                                     c_mat[:p.T, :, :], Y[:p.T], L[:p.T],
                                     K[:p.T], factor, theta, etr_params_4D, p,
                                     'TPI')
        total_tax_revenue[:p.T] = total_tax_rev
        dg_fixed_values = (Y, total_tax_revenue, agg_pension_outlays, TR,
                           Gbaseline, D0_baseline)
        (Dnew, G[:p.T], D_d[:p.T], D_f[:p.T], new_borrowing,
         debt_service, new_borrowing_f) =\
            fiscal.D_G_path(r_gov, dg_fixed_values, p)
        L[:p.T] = aggr.get_L(n_mat[:p.T], p, 'TPI')
        B[1:p.T] = aggr.get_B(bmat_splus1[:p.T], p, 'TPI', False)[:p.T - 1]
        K_demand_open = firm.get_K(L[:p.T], p.world_int_rate[:p.T], p, 'TPI')
        K[:p.T], K_d[:p.T], K_f[:p.T] = aggr.get_K_splits(
            B[:p.T], K_demand_open, D_d[:p.T], p.zeta_K[:p.T])
        Ynew = firm.get_Y(K[:p.T], L[:p.T], p, 'TPI')
        rnew = r.copy()
        rnew[:p.T] = firm.get_r(Ynew[:p.T], K[:p.T], p, 'TPI')
        # For case where economy is small open econ
        r[p.zeta_K == 1] = p.world_int_rate[p.zeta_K == 1]
        r_gov_new = fiscal.get_r_gov(rnew, p)
        r_hh_new = aggr.get_r_hh(rnew[:p.T], r_gov_new[:p.T], K[:p.T],
                                 Dnew[:p.T])
        # compute w
        wnew = firm.get_w_from_r(rnew[:p.T], p, 'TPI')

        b_mat_shift = np.append(np.reshape(initial_b, (1, p.S, p.J)),
                                b_mat[:p.T - 1, :, :],
                                axis=0)
        BQnew = aggr.get_BQ(r_hh_new[:p.T], b_mat_shift, None, p, 'TPI', False)
        bqmat_new = household.get_bq(BQnew, None, p, 'TPI')
        (total_tax_rev, iit_payroll_tax_revenue, agg_pension_outlays,
         bequest_tax_revenue, wealth_tax_revenue, cons_tax_revenue,
         business_tax_revenue, payroll_tax_revenue,
         iit_revenue) = aggr.revenue(r_hh_new[:p.T], wnew[:p.T], bmat_s,
                                     n_mat[:p.T, :, :], bqmat_new[:p.T, :, :],
                                     c_mat[:p.T, :, :], Ynew[:p.T], L[:p.T],
                                     K[:p.T], factor, theta, etr_params_4D, p,
                                     'TPI')
        total_tax_revenue[:p.T] = total_tax_rev
        TR_new = fiscal.get_TR(Ynew[:p.T], TR[:p.T], G[:p.T],
                               total_tax_revenue[:p.T],
                               agg_pension_outlays[:p.T], p, 'TPI')

        # update vars for next iteration
        w[:p.T] = wnew[:p.T]
        r[:p.T] = utils.convex_combo(rnew[:p.T], r[:p.T], p.nu)
        BQ[:p.T] = utils.convex_combo(BQnew[:p.T], BQ[:p.T], p.nu)
        D[:p.T] = Dnew[:p.T]
        Y[:p.T] = utils.convex_combo(Ynew[:p.T], Y[:p.T], p.nu)
        if not p.baseline_spending:
            TR[:p.T] = utils.convex_combo(TR_new[:p.T], TR[:p.T], p.nu)
        guesses_b = utils.convex_combo(b_mat, guesses_b, p.nu)
        guesses_n = utils.convex_combo(n_mat, guesses_n, p.nu)
        print('r diff: ', (rnew[:p.T] - r[:p.T]).max(),
              (rnew[:p.T] - r[:p.T]).min())
        print('BQ diff: ', (BQnew[:p.T] - BQ[:p.T]).max(),
              (BQnew[:p.T] - BQ[:p.T]).min())
        print('TR diff: ', (TR_new[:p.T] - TR[:p.T]).max(),
              (TR_new[:p.T] - TR[:p.T]).min())
        print('Y diff: ', (Ynew[:p.T] - Y[:p.T]).max(),
              (Ynew[:p.T] - Y[:p.T]).min())
        if not p.baseline_spending:
            if TR.all() != 0:
                TPIdist = np.array(
                    list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) + list(
                        utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                    list(utils.pct_diff_func(TR_new[:p.T], TR[:p.T]))).max()
            else:
                TPIdist = np.array(
                    list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) + list(
                        utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                    list(np.abs(TR[:p.T]))).max()
        else:
            TPIdist = np.array(
                list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) +
                list(utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                list(utils.pct_diff_func(Ynew[:p.T], Y[:p.T]))).max()

        TPIdist_vec[TPIiter] = TPIdist
        # After T=10, if cycling occurs, drop the value of nu
        # wait til after T=10 or so, because sometimes there is a jump up
        # in the first couple iterations
        # if TPIiter > 10:
        #     if TPIdist_vec[TPIiter] - TPIdist_vec[TPIiter - 1] > 0:
        #         nu /= 2
        #         print 'New Value of nu:', nu
        TPIiter += 1
        print('Iteration:', TPIiter)
        print('\tDistance:', TPIdist)

    # Compute effective and marginal tax rates for all agents
    mtrx_params_4D = np.tile(
        p.mtrx_params.reshape(p.T, p.S, 1, p.mtrx_params.shape[2]),
        (1, 1, p.J, 1))
    mtry_params_4D = np.tile(
        p.mtry_params.reshape(p.T, p.S, 1, p.mtry_params.shape[2]),
        (1, 1, p.J, 1))

    e_3D = np.tile(p.e.reshape(1, p.S, p.J), (p.T, 1, 1))
    mtry_path = tax.MTR_income(r_hh_path[:p.T], wpath[:p.T],
                               bmat_s[:p.T, :, :], n_mat[:p.T, :, :], factor,
                               True, e_3D, etr_params_4D, mtry_params_4D, p)
    mtrx_path = tax.MTR_income(r_hh_path[:p.T], wpath[:p.T],
                               bmat_s[:p.T, :, :], n_mat[:p.T, :, :], factor,
                               False, e_3D, etr_params_4D, mtrx_params_4D, p)
    etr_path = tax.ETR_income(r_hh_path[:p.T], wpath[:p.T], bmat_s[:p.T, :, :],
                              n_mat[:p.T, :, :], factor, e_3D, etr_params_4D,
                              p)

    C = aggr.get_C(c_mat, p, 'TPI')
    # Note that implicity in this computation is that immigrants'
    # wealth is all in the form of private capital
    I_d = aggr.get_I(bmat_splus1[:p.T], K_d[1:p.T + 1], K_d[:p.T], p, 'TPI')
    I = aggr.get_I(bmat_splus1[:p.T], K[1:p.T + 1], K[:p.T], p, 'TPI')
    # solve resource constraint
    # foreign debt service costs
    debt_service_f = fiscal.get_debt_service_f(r_hh, D_f)
    RC_error = aggr.resource_constraint(Y[:p.T - 1], C[:p.T - 1], G[:p.T - 1],
                                        I_d[:p.T - 1], K_f[:p.T - 1],
                                        new_borrowing_f[:p.T - 1],
                                        debt_service_f[:p.T - 1],
                                        r_hh[:p.T - 1], p)
    # Compute total investment (not just domestic)
    I_total = aggr.get_I(None, K[1:p.T + 1], K[:p.T], p, 'total_tpi')

    # Compute resource constraint error
    rce_max = np.amax(np.abs(RC_error))
    print('Max absolute value resource constraint error:', rce_max)

    print('Checking time path for violations of constraints.')
    for t in range(p.T):
        household.constraint_checker_TPI(b_mat[t], n_mat[t], c_mat[t], t,
                                         p.ltilde)

    eul_savings = euler_errors[:, :p.S, :].max(1).max(1)
    eul_laborleisure = euler_errors[:, p.S:, :].max(1).max(1)

    print('Max Euler error, savings: ', eul_savings)
    print('Max Euler error labor supply: ', eul_laborleisure)
    '''
    ------------------------------------------------------------------------
    Save variables/values so they can be used in other modules
    ------------------------------------------------------------------------
    '''

    output = {
        'Y': Y[:p.T],
        'B': B,
        'K': K,
        'K_f': K_f,
        'K_d': K_d,
        'L': L,
        'C': C,
        'I': I,
        'I_total': I_total,
        'I_d': I_d,
        'BQ': BQ,
        'total_tax_revenue': total_tax_revenue,
        'business_tax_revenue': business_tax_revenue,
        'iit_payroll_tax_revenue': iit_payroll_tax_revenue,
        'iit_revenue': iit_revenue,
        'payroll_tax_revenue': payroll_tax_revenue,
        'TR': TR,
        'agg_pension_outlays': agg_pension_outlays,
        'bequest_tax_revenue': bequest_tax_revenue,
        'wealth_tax_revenue': wealth_tax_revenue,
        'cons_tax_revenue': cons_tax_revenue,
        'G': G,
        'D': D,
        'D_f': D_f,
        'D_d': D_d,
        'r': r,
        'r_gov': r_gov,
        'r_hh': r_hh,
        'w': w,
        'bmat_splus1': bmat_splus1,
        'bmat_s': bmat_s[:p.T, :, :],
        'n_mat': n_mat[:p.T, :, :],
        'c_path': c_mat,
        'bq_path': bqmat,
        'tr_path': trmat,
        'y_before_tax_mat': y_before_tax_mat,
        'tax_path': tax_mat,
        'eul_savings': eul_savings,
        'eul_laborleisure': eul_laborleisure,
        'resource_constraint_error': RC_error,
        'new_borrowing_f': new_borrowing_f,
        'debt_service_f': debt_service_f,
        'etr_path': etr_path,
        'mtrx_path': mtrx_path,
        'mtry_path': mtry_path
    }

    tpi_dir = os.path.join(p.output_base, "TPI")
    utils.mkdirs(tpi_dir)
    tpi_vars = os.path.join(tpi_dir, "TPI_vars.pkl")
    with open(tpi_vars, "wb") as f:
        pickle.dump(output, f)

    if np.any(G) < 0:
        print('Government spending is negative along transition path' +
              ' to satisfy budget')

    if (((TPIiter >= p.maxiter) or (np.absolute(TPIdist) > p.mindist_TPI))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found' +
                           ' (TPIdist)')

    if ((np.any(np.absolute(RC_error) >= p.mindist_TPI * 10))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found ' +
                           '(RC_error)')

    if ((np.any(np.absolute(eul_savings) >= p.mindist_TPI) or
         (np.any(np.absolute(eul_laborleisure) > p.mindist_TPI)))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found ' +
                           '(eulers)')

    return output
Example #13
0
def run_TPI(p, client=None):

    # unpack tuples of parameters
    initial_values, SS_values, baseline_values = get_initial_SS_values(p)
    (B0, b_sinit, b_splus1init, factor, initial_b, initial_n,
     D0) = initial_values
    (Kss, Bss, Lss, rss, wss, BQss, T_Hss, total_revenue_ss, bssmat_splus1,
     nssmat, Yss, Gss, theta) = SS_values
    (T_Hbaseline, Gbaseline) = baseline_values

    print('Government spending breakpoints are tG1: ', p.tG1,
          '; and tG2:', p.tG2)

    # Initialize guesses at time paths
    # Make array of initial guesses for labor supply and savings
    domain = np.linspace(0, p.T, p.T)
    domain2 = np.tile(domain.reshape(p.T, 1, 1), (1, p.S, p.J))
    ending_b = bssmat_splus1
    guesses_b = (-1 / (domain2 + 1)) * (ending_b - initial_b) + ending_b
    ending_b_tail = np.tile(ending_b.reshape(1, p.S, p.J), (p.S, 1, 1))
    guesses_b = np.append(guesses_b, ending_b_tail, axis=0)

    domain3 = np.tile(np.linspace(0, 1, p.T).reshape(p.T, 1, 1), (1, p.S, p.J))
    guesses_n = domain3 * (nssmat - initial_n) + initial_n
    ending_n_tail = np.tile(nssmat.reshape(1, p.S, p.J), (p.S, 1, 1))
    guesses_n = np.append(guesses_n, ending_n_tail, axis=0)
    b_mat = guesses_b  # np.zeros((p.T + p.S, p.S, p.J))
    n_mat = guesses_n  # np.zeros((p.T + p.S, p.S, p.J))
    ind = np.arange(p.S)

    L_init = np.ones((p.T + p.S,)) * Lss
    B_init = np.ones((p.T + p.S,)) * Bss
    L_init[:p.T] = aggr.get_L(n_mat[:p.T], p, 'TPI')
    B_init[1:p.T] = aggr.get_K(b_mat[:p.T], p, 'TPI', False)[:p.T - 1]
    B_init[0] = B0

    if not p.small_open:
        if p.budget_balance:
            K_init = B_init
        else:
            K_init = B_init * Kss / Bss
    else:
        K_init = firm.get_K(L_init, p.firm_r, p, 'TPI')

    K = K_init

    L = L_init
    B = B_init
    Y = np.zeros_like(K)
    Y[:p.T] = firm.get_Y(K[:p.T], L[:p.T], p, 'TPI')
    Y[p.T:] = Yss
    r = np.zeros_like(Y)
    if not p.small_open:
        r[:p.T] = firm.get_r(Y[:p.T], K[:p.T], p, 'TPI')
        r[p.T:] = rss
    else:
        r = p.firm_r
    # compute w
    w = np.zeros_like(r)
    w[:p.T] = firm.get_w_from_r(r[:p.T], p, 'TPI')
    w[p.T:] = wss
    r_gov = fiscal.get_r_gov(r, p)
    if p.budget_balance:
        r_hh = r
    else:
        r_hh = aggr.get_r_hh(r, r_gov, K, p.debt_ratio_ss * Y)
    if p.small_open:
        r_hh = p.hh_r

    BQ0 = aggr.get_BQ(r[0], initial_b, None, p, 'SS', True)
    if not p.use_zeta:
        BQ = np.zeros((p.T + p.S, p.J))
        for j in range(p.J):
            BQ[:, j] = (list(np.linspace(BQ0[j], BQss[j], p.T)) +
                        [BQss[j]] * p.S)
        BQ = np.array(BQ)
    else:
        BQ = (list(np.linspace(BQ0, BQss, p.T)) + [BQss] * p.S)
        BQ = np.array(BQ)
    if p.budget_balance:
        if np.abs(T_Hss) < 1e-13:
            T_Hss2 = 0.0  # sometimes SS is very small but not zero,
            # even if taxes are zero, this get's rid of the approximation
            # error, which affects the perc changes below
        else:
            T_Hss2 = T_Hss
        T_H = np.ones(p.T + p.S) * T_Hss2
        total_revenue = T_H
        G = np.zeros(p.T + p.S)
    elif not p.baseline_spending:
        T_H = p.alpha_T * Y
    elif p.baseline_spending:
        T_H = T_Hbaseline
        T_H_new = p.T_H   # Need to set T_H_new for later reference
        G = Gbaseline
        G_0 = Gbaseline[0]

    # Initialize some starting value
    if p.budget_balance:
        D = 0.0 * Y
    else:
        D = p.debt_ratio_ss * Y
    TPIiter = 0
    TPIdist = 10
    euler_errors = np.zeros((p.T, 2 * p.S, p.J))
    TPIdist_vec = np.zeros(p.maxiter)

    print('analytical mtrs in tpi = ', p.analytical_mtrs)
    print('tax function type in tpi = ', p.tax_func_type)

    # TPI loop
    while (TPIiter < p.maxiter) and (TPIdist >= p.mindist_TPI):
        r_gov[:p.T] = fiscal.get_r_gov(r[:p.T], p)
        if p.budget_balance:
            r_hh[:p.T] = r[:p.T]
        else:
            K[:p.T] = firm.get_K_from_Y(Y[:p.T], r[:p.T], p, 'TPI')
            r_hh[:p.T] = aggr.get_r_hh(r[:p.T], r_gov[:p.T], K[:p.T], D[:p.T])
        if p.small_open:
            r_hh[:p.T] = p.hh_r[:p.T]

        outer_loop_vars = (r, w, r_hh, BQ, T_H, theta)

        euler_errors = np.zeros((p.T, 2 * p.S, p.J))
        lazy_values = []
        for j in range(p.J):
            guesses = (guesses_b[:, :, j], guesses_n[:, :, j])
            lazy_values.append(
                delayed(inner_loop)(guesses, outer_loop_vars,
                                    initial_values, j, ind, p))
        results = compute(*lazy_values, scheduler=dask.multiprocessing.get,
                          num_workers=p.num_workers)
        for j, result in enumerate(results):
            euler_errors[:, :, j], b_mat[:, :, j], n_mat[:, :, j] = result

        bmat_s = np.zeros((p.T, p.S, p.J))
        bmat_s[0, 1:, :] = initial_b[:-1, :]
        bmat_s[1:, 1:, :] = b_mat[:p.T-1, :-1, :]
        bmat_splus1 = np.zeros((p.T, p.S, p.J))
        bmat_splus1[:, :, :] = b_mat[:p.T, :, :]

        L[:p.T] = aggr.get_L(n_mat[:p.T], p, 'TPI')
        B[1:p.T] = aggr.get_K(bmat_splus1[:p.T], p, 'TPI',
                              False)[:p.T - 1]
        if np.any(B) < 0:
            print('B has negative elements. B[0:9]:', B[0:9])
            print('B[T-2:T]:', B[p.T - 2, p.T])

        etr_params_4D = np.tile(
            p.etr_params.reshape(p.T, p.S, 1, p.etr_params.shape[2]),
            (1, 1, p.J, 1))
        bqmat = household.get_bq(BQ, None, p, 'TPI')
        tax_mat = tax.total_taxes(r_hh[:p.T], w[:p.T], bmat_s,
                                  n_mat[:p.T, :, :], bqmat[:p.T, :, :],
                                  factor, T_H[:p.T], theta, 0, None,
                                  False, 'TPI', p.e, etr_params_4D, p)
        r_hh_path = utils.to_timepath_shape(r_hh, p)
        wpath = utils.to_timepath_shape(w, p)
        c_mat = household.get_cons(r_hh_path[:p.T, :, :], wpath[:p.T, :, :],
                                   bmat_s, bmat_splus1,
                                   n_mat[:p.T, :, :], bqmat[:p.T, :, :],
                                   tax_mat, p.e, p.tau_c[:p.T, :, :], p)

        if not p.small_open:
            if p.budget_balance:
                K[:p.T] = B[:p.T]
            else:
                if not p.baseline_spending:
                    Y = T_H / p.alpha_T  # maybe unecessary

                    (total_rev, T_Ipath, T_Ppath, T_BQpath, T_Wpath,
                     T_Cpath, business_revenue) = aggr.revenue(
                        r_hh[:p.T], w[:p.T], bmat_s, n_mat[:p.T, :, :],
                        bqmat[:p.T, :, :], c_mat[:p.T, :, :], Y[:p.T],
                        L[:p.T], K[:p.T], factor, theta, etr_params_4D,
                        p, 'TPI')
                    total_revenue = np.array(list(total_rev) +
                                             [total_revenue_ss] * p.S)

                # set intial debt value
                if p.baseline:
                    D_0 = p.initial_debt_ratio * Y[0]
                else:
                    D_0 = D0
                if not p.baseline_spending:
                    G_0 = p.alpha_G[0] * Y[0]
                dg_fixed_values = (Y, total_revenue, T_H, D_0, G_0)
                Dnew, G = fiscal.D_G_path(r_gov, dg_fixed_values,
                                          Gbaseline, p)

                K[:p.T] = B[:p.T] - Dnew[:p.T]
                if np.any(K < 0):
                    print('K has negative elements. Setting them ' +
                          'positive to prevent NAN.')
                    K[:p.T] = np.fmax(K[:p.T], 0.05 * B[:p.T])
        else:
            K[:p.T] = firm.get_K(L[:p.T], p.firm_r[:p.T], p, 'TPI')
        Ynew = firm.get_Y(K[:p.T], L[:p.T], p, 'TPI')
        if not p.small_open:
            rnew = firm.get_r(Ynew[:p.T], K[:p.T], p, 'TPI')
        else:
            rnew = r.copy()
        r_gov_new = fiscal.get_r_gov(rnew, p)
        if p.budget_balance:
            r_hh_new = rnew[:p.T]
        else:
            r_hh_new = aggr.get_r_hh(rnew, r_gov_new, K[:p.T],
                                     Dnew[:p.T])
        if p.small_open:
            r_hh_new = p.hh_r[:p.T]
        # compute w
        wnew = firm.get_w_from_r(rnew[:p.T], p, 'TPI')

        b_mat_shift = np.append(np.reshape(initial_b, (1, p.S, p.J)),
                                b_mat[:p.T - 1, :, :], axis=0)
        BQnew = aggr.get_BQ(r_hh_new[:p.T], b_mat_shift, None, p,
                            'TPI', False)
        bqmat_new = household.get_bq(BQnew, None, p, 'TPI')
        (total_rev, T_Ipath, T_Ppath, T_BQpath, T_Wpath, T_Cpath,
         business_revenue) = aggr.revenue(
                r_hh_new[:p.T], wnew[:p.T], bmat_s, n_mat[:p.T, :, :],
                bqmat_new[:p.T, :, :], c_mat[:p.T, :, :], Ynew[:p.T],
                L[:p.T], K[:p.T], factor, theta, etr_params_4D, p, 'TPI')
        total_revenue = np.array(list(total_rev) +
                                 [total_revenue_ss] * p.S)

        if p.budget_balance:
            T_H_new = total_revenue
        elif not p.baseline_spending:
            T_H_new = p.alpha_T[:p.T] * Ynew[:p.T]
        # If baseline_spending==True, no need to update T_H, it's fixed

        if p.small_open and not p.budget_balance:
            # Loop through years to calculate debt and gov't spending.
            # This is done earlier when small_open=False.
            if p.baseline:
                D_0 = p.initial_debt_ratio * Y[0]
            else:
                D_0 = D0
            if not p.baseline_spending:
                G_0 = p.alpha_G[0] * Ynew[0]
            dg_fixed_values = (Ynew, total_revenue, T_H, D_0, G_0)
            Dnew, G = fiscal.D_G_path(r_gov_new, dg_fixed_values, Gbaseline, p)

        if p.budget_balance:
            Dnew = D

        w[:p.T] = wnew[:p.T]
        r[:p.T] = utils.convex_combo(rnew[:p.T], r[:p.T], p.nu)
        BQ[:p.T] = utils.convex_combo(BQnew[:p.T], BQ[:p.T], p.nu)
        D = Dnew
        Y[:p.T] = utils.convex_combo(Ynew[:p.T], Y[:p.T], p.nu)
        if not p.baseline_spending:
            T_H[:p.T] = utils.convex_combo(T_H_new[:p.T], T_H[:p.T], p.nu)
        guesses_b = utils.convex_combo(b_mat, guesses_b, p.nu)
        guesses_n = utils.convex_combo(n_mat, guesses_n, p.nu)

        print('r diff: ', (rnew[:p.T] - r[:p.T]).max(),
              (rnew[:p.T] - r[:p.T]).min())
        print('BQ diff: ', (BQnew[:p.T] - BQ[:p.T]).max(),
              (BQnew[:p.T] - BQ[:p.T]).min())
        print('T_H diff: ', (T_H_new[:p.T]-T_H[:p.T]).max(),
              (T_H_new[:p.T] - T_H[:p.T]).min())
        print('Y diff: ', (Ynew[:p.T]-Y[:p.T]).max(),
              (Ynew[:p.T] - Y[:p.T]).min())
        if not p.baseline_spending:
            if T_H.all() != 0:
                TPIdist = np.array(
                    list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) +
                    list(utils.pct_diff_func(BQnew[:p.T],
                                             BQ[:p.T]).flatten()) +
                    list(utils.pct_diff_func(wnew[:p.T], w[:p.T])) +
                    list(utils.pct_diff_func(T_H_new[:p.T],
                                             T_H[:p.T]))).max()
            else:
                TPIdist = np.array(
                    list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) +
                    list(utils.pct_diff_func(BQnew[:p.T],
                                             BQ[:p.T]).flatten()) +
                    list(utils.pct_diff_func(wnew[:p.T], w[:p.T])) +
                    list(np.abs(T_H[:p.T]))).max()
        else:
            TPIdist = np.array(
                list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) +
                list(utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten())
                + list(utils.pct_diff_func(wnew[:p.T], w[:p.T])) +
                list(utils.pct_diff_func(Ynew[:p.T], Y[:p.T]))).max()

        TPIdist_vec[TPIiter] = TPIdist
        # After T=10, if cycling occurs, drop the value of nu
        # wait til after T=10 or so, because sometimes there is a jump up
        # in the first couple iterations
        # if TPIiter > 10:
        #     if TPIdist_vec[TPIiter] - TPIdist_vec[TPIiter - 1] > 0:
        #         nu /= 2
        #         print 'New Value of nu:', nu
        TPIiter += 1
        print('Iteration:', TPIiter)
        print('\tDistance:', TPIdist)

    # Compute effective and marginal tax rates for all agents
    mtrx_params_4D = np.tile(
        p.mtrx_params.reshape(p.T, p.S, 1, p.mtrx_params.shape[2]),
        (1, 1, p.J, 1))
    mtry_params_4D = np.tile(
        p.mtry_params.reshape(p.T, p.S, 1, p.mtry_params.shape[2]),
        (1, 1, p.J, 1))

    e_3D = np.tile(p.e.reshape(1, p.S, p.J), (p.T, 1, 1))
    mtry_path = tax.MTR_income(r_hh_path[:p.T], wpath[:p.T],
                               bmat_s[:p.T, :, :],
                               n_mat[:p.T, :, :], factor, True,
                               e_3D, etr_params_4D, mtry_params_4D, p)
    mtrx_path = tax.MTR_income(r_hh_path[:p.T], wpath[:p.T],
                               bmat_s[:p.T, :, :],
                               n_mat[:p.T, :, :], factor, False,
                               e_3D, etr_params_4D, mtrx_params_4D, p)
    etr_path = tax.ETR_income(r_hh_path[:p.T], wpath[:p.T],
                              bmat_s[:p.T, :, :],
                              n_mat[:p.T, :, :], factor, e_3D,
                              etr_params_4D, p)

    C = aggr.get_C(c_mat, p, 'TPI')

    if not p.small_open:
        I = aggr.get_I(bmat_splus1[:p.T], K[1:p.T + 1], K[:p.T], p, 'TPI')
        rc_error = Y[:p.T] - C[:p.T] - I[:p.T] - G[:p.T]
    else:
        I = ((1 + np.squeeze(np.hstack((p.g_n[1:p.T], p.g_n_ss)))) *
             np.exp(p.g_y) * K[1:p.T + 1] - (1.0 - p.delta) * K[:p.T])
        BI = aggr.get_I(bmat_splus1[:p.T], B[1:p.T + 1], B[:p.T], p, 'TPI')
        new_borrowing = (D[1:p.T] * (1 + p.g_n[1:p.T]) *
                         np.exp(p.g_y) - D[:p.T - 1])
        rc_error = (Y[:p.T - 1] + new_borrowing - (
            C[:p.T - 1] + BI[:p.T - 1] + G[:p.T - 1]) +
                    (p.hh_r[:p.T - 1] * B[:p.T - 1] - (
                        p.delta + p.firm_r[:p.T - 1]) * K[:p.T - 1] -
                     p.hh_r[:p.T - 1] * D[:p.T - 1]))

    # Compute total investment (not just domestic)
    I_total = ((1 + p.g_n[:p.T]) * np.exp(p.g_y) * K[1:p.T + 1] -
               (1.0 - p.delta) * K[:p.T])

    rce_max = np.amax(np.abs(rc_error))
    print('Max absolute value resource constraint error:', rce_max)

    print('Checking time path for violations of constraints.')
    for t in range(p.T):
        household.constraint_checker_TPI(
            b_mat[t], n_mat[t], c_mat[t], t, p.ltilde)

    eul_savings = euler_errors[:, :p.S, :].max(1).max(1)
    eul_laborleisure = euler_errors[:, p.S:, :].max(1).max(1)

    print('Max Euler error, savings: ', eul_savings)
    print('Max Euler error labor supply: ', eul_laborleisure)

    '''
    ------------------------------------------------------------------------
    Save variables/values so they can be used in other modules
    ------------------------------------------------------------------------
    '''

    output = {'Y': Y[:p.T], 'B': B, 'K': K, 'L': L, 'C': C, 'I': I,
              'I_total': I_total, 'BQ': BQ, 'total_revenue': total_revenue,
              'business_revenue': business_revenue,
              'IITpayroll_revenue': T_Ipath, 'T_H': T_H,
              'T_P': T_Ppath, 'T_BQ': T_BQpath, 'T_W': T_Wpath,
              'T_C': T_Cpath, 'G': G, 'D': D, 'r': r, 'r_gov': r_gov,
              'r_hh': r_hh, 'w': w, 'bmat_splus1': bmat_splus1,
              'bmat_s': bmat_s[:p.T, :, :], 'n_mat': n_mat[:p.T, :, :],
              'c_path': c_mat, 'bq_path': bqmat,
              'tax_path': tax_mat, 'eul_savings': eul_savings,
              'eul_laborleisure': eul_laborleisure,
              'resource_constraint_error': rc_error,
              'etr_path': etr_path, 'mtrx_path': mtrx_path,
              'mtry_path': mtry_path}

    tpi_dir = os.path.join(p.output_base, "TPI")
    utils.mkdirs(tpi_dir)
    tpi_vars = os.path.join(tpi_dir, "TPI_vars.pkl")
    pickle.dump(output, open(tpi_vars, "wb"))

    if np.any(G) < 0:
        print('Government spending is negative along transition path' +
              ' to satisfy budget')

    if (((TPIiter >= p.maxiter) or
         (np.absolute(TPIdist) > p.mindist_TPI)) and
        ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found' +
                           ' (TPIdist)')

    if ((np.any(np.absolute(rc_error) >= p.mindist_TPI * 10)) and
        ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found ' +
                           '(rc_error)')

    if ((np.any(np.absolute(eul_savings) >= p.mindist_TPI) or
         (np.any(np.absolute(eul_laborleisure) > p.mindist_TPI))) and
        ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found ' +
                           '(eulers)')

    return output
Example #14
0
def runner_SS(output_base,
              baseline_dir,
              baseline=False,
              analytical_mtrs=True,
              age_specific=False,
              reform=0,
              fix_transfers=False,
              user_params={},
              guid='',
              calibrate_model=False,
              run_micro=True):

    from ogusa import parameters, demographics, income, utils

    tick = time.time()

    #Create output directory structure
    saved_moments_dir = os.path.join(output_base, "Saved_moments")
    ss_dir = os.path.join(output_base, "SS")
    tpi_dir = os.path.join(output_base, "TPI")
    dirs = [saved_moments_dir, ss_dir, tpi_dir]
    for _dir in dirs:
        try:
            print "making dir: ", _dir
            os.makedirs(_dir)
        except OSError as oe:
            pass

    print("in runner, baseline is ", baseline)
    run_params = ogusa.parameters.get_parameters(baseline=baseline,
                                                 reform=reform,
                                                 guid=guid,
                                                 user_modifiable=True)
    run_params['analytical_mtrs'] = analytical_mtrs

    # Modify ogusa parameters based on user input
    if 'frisch' in user_params:
        print "updating fricsh and associated"
        b_ellipse, upsilon = ogusa.elliptical_u_est.estimation(
            user_params['frisch'], run_params['ltilde'])
        run_params['b_ellipse'] = b_ellipse
        run_params['upsilon'] = upsilon
        run_params.update(user_params)

    # Modify ogusa parameters based on user input
    if 'sigma' in user_params:
        print "updating sigma"
        run_params['sigma'] = user_params['sigma']
        run_params.update(user_params)

    from ogusa import SS, TPI, SS_alt

    # List of parameter names that will not be changing (unless we decide to
    # change them for a tax experiment)

    param_names = [
        'S', 'J', 'T', 'BW', 'lambdas', 'starting_age', 'ending_age', 'beta',
        'sigma', 'alpha', 'nu', 'Z', 'delta', 'E', 'ltilde', 'g_y', 'maxiter',
        'mindist_SS', 'mindist_TPI', 'analytical_mtrs', 'b_ellipse',
        'k_ellipse', 'upsilon', 'chi_b_guess', 'chi_n_guess', 'etr_params',
        'mtrx_params', 'mtry_params', 'tau_payroll', 'tau_bq', 'retire',
        'mean_income_data', 'g_n_vector', 'h_wealth', 'p_wealth', 'm_wealth',
        'omega', 'g_n_ss', 'omega_SS', 'surv_rate', 'imm_rates', 'e', 'rho',
        'omega_S_preTP'
    ]

    sim_params = {}
    for key in param_names:
        sim_params[key] = run_params[key]

    sim_params['output_dir'] = output_base
    sim_params['run_params'] = run_params
    '''
    ------------------------------------------------------------------------
        If using income tax reform, need to determine parameters that yield
        same SS revenue as the wealth tax reform.
    ------------------------------------------------------------------------
    '''
    if reform == 1:

        income_tax_params, ss_params, iterative_params, chi_params = SS.create_steady_state_parameters(
            **sim_params)

        # find SS revenue from wealth tax reform
        reform3_ss_dir = os.path.join(
            "./OUTPUT_WEALTH_REFORM" + '/sigma' + str(run_params['sigma']),
            "SS/SS_vars.pkl")
        reform3_ss_solutions = pickle.load(open(reform3_ss_dir, "rb"))
        receipts_to_match = reform3_ss_solutions[
            'T_Hss'] + reform3_ss_solutions['Gss']

        # create function to match SS revenue
        def matcher(d_guess, params):
            income_tax_params, receipts_to_match, ss_params, iterative_params,\
                              chi_params, baseline, baseline_dir = params
            analytical_mtrs, etr_params, mtrx_params, mtry_params = income_tax_params
            etr_params[:, 3] = d_guess
            mtrx_params[:, 3] = d_guess
            mtry_params[:, 3] = d_guess
            income_tax_params = analytical_mtrs, etr_params, mtrx_params, mtry_params
            ss_outputs = SS.run_SS(income_tax_params,
                                   ss_params,
                                   iterative_params,
                                   chi_params,
                                   baseline,
                                   fix_transfers=fix_transfers,
                                   baseline_dir=baseline_dir)

            receipts_new = ss_outputs['T_Hss'] + ss_outputs['Gss']
            error = abs(receipts_to_match - receipts_new)
            if d_guess <= 0:
                error = 1e14
            print 'Error in taxes:', error
            return error

        print 'Computing new income tax to match wealth tax'

        # d_guess= .452 # initial guess 0.452 works for sigma = 2, frisch 1.5
        # new_d_inc = d_guess
        # import scipy.optimize as opt
        # params = [income_tax_params, receipts_to_match, ss_params, iterative_params,
        #                   chi_params, baseline, baseline_dir]
        # new_d_inc = opt.fsolve(matcher, d_guess, args=params, xtol=1e-8)
        # print '\tOld income tax:', d_guess
        # print '\tNew income tax:', new_d_inc

        def samesign(a, b):
            return a * b > 0

        def bisect_method(func, params, low, high):
            'Find root of continuous function where f(low) and f(high) have opposite signs'

            #assert not samesign(func(params,low), func(params,high))

            for i in range(54):
                midpoint = (low + high) / 2.0
                if samesign(func(params, low), func(params, midpoint)):
                    low = midpoint
                else:
                    high = midpoint

            return midpoint

        def solve_model(params, d):
            income_tax_params, ss_params, iterative_params,\
                              chi_params, baseline ,baseline_dir = params
            analytical_mtrs, etr_params, mtrx_params, mtry_params = income_tax_params
            etr_params[:, 3] = d
            mtrx_params[:, 3] = d
            mtry_params[:, 3] = d
            income_tax_params = analytical_mtrs, etr_params, mtrx_params, mtry_params
            ss_outputs = SS.run_SS(income_tax_params,
                                   ss_params,
                                   iterative_params,
                                   chi_params,
                                   baseline,
                                   fix_transfers=fix_transfers,
                                   baseline_dir=baseline_dir)
            ss_dir = os.path.join("./OUTPUT_INCOME_REFORM/sigma2.0",
                                  "SS/SS_vars.pkl")
            pickle.dump(ss_outputs, open(ss_dir, "wb"))
            receipts_new = ss_outputs['T_Hss'] + ss_outputs['Gss']
            new_error = receipts_to_match - receipts_new
            print 'Error in taxes:', error
            print 'New income tax:', d
            return new_error

        # print 'Computing new income tax to match wealth tax'
        # d_guess= 0.5025 # initial guess
        # # income_tax_params, receipts_to_match, ss_params, iterative_params,\
        # #                   chi_params, baseline, baseline_dir = params
        # analytical_mtrs, etr_params, mtrx_params, mtry_params = income_tax_params
        # etr_params[:,3] = d_guess
        # mtrx_params[:,3] = d_guess
        # mtry_params[:,3] = d_guess
        # income_tax_params = analytical_mtrs, etr_params, mtrx_params, mtry_params
        # ss_outputs = SS.run_SS(income_tax_params, ss_params, iterative_params,
        #                   chi_params, baseline, fix_transfers=fix_transfers,
        #                   baseline_dir=baseline_dir)
        # ss_dir = os.path.join("./OUTPUT_INCOME_REFORM/sigma2.0", "SS/SS_vars.pkl")
        # pickle.dump(ss_outputs, open(ss_dir, "wb"))
        # receipts_new = ss_outputs['T_Hss'] + ss_outputs['Gss']
        # error = receipts_to_match - receipts_new
        # new_error = error
        # print "ERROR: ", error
        # max_loop_iter = 1
        # output_list = np.zeros((max_loop_iter,3))
        # loop_iter = 0
        # bisect = 0
        # d_guess_old = d_guess
        # # while np.abs(new_error) > 1e-8 and loop_iter < max_loop_iter:
        # while loop_iter < max_loop_iter:
        #     # if new_error > 0 and new_error > 0 and bisect == 0:
        #     #     d_guess_old = d_guess
        #     #     d_guess+=0.001
        #     # elif new_error < 0 and new_error < 0 and bisect == 0:
        #     #     d_guess_old = d_guess
        #     #     d_guess-=0.001
        #     #     d_guess = max(0.0,d_guess) # constrain so not negative
        #     # else:
        #     #     bisect = 1
        #     #     print 'Entering bisection method'
        #     #     params = income_tax_params, ss_params, iterative_params,\
        #     #                       chi_params, baseline ,baseline_dir
        #     #     high = max(d_guess,d_guess_old)
        #     #     low = min(d_guess,d_guess_old)
        #     #     d_guess = bisect_method(solve_model, params, low, high)
        #     #     loop_iter = max_loop_iter
        #     d_guess_old = d_guess
        #     d_guess+=0.0005
        #
        #     error = new_error
        #     etr_params[:,3] = d_guess
        #     mtrx_params[:,3] = d_guess
        #     mtry_params[:,3] = d_guess
        #     income_tax_params = analytical_mtrs, etr_params, mtrx_params, mtry_params
        #     print 'now here$$$'
        #     ss_outputs = SS.run_SS(income_tax_params, ss_params, iterative_params,
        #                       chi_params, baseline, fix_transfers=fix_transfers,
        #                       baseline_dir=baseline_dir)
        #     ss_dir = os.path.join("./OUTPUT_INCOME_REFORM/sigma2.0", "SS/SS_vars.pkl")
        #     pickle.dump(ss_outputs, open(ss_dir, "wb"))
        #     receipts_new = ss_outputs['T_Hss'] + ss_outputs['Gss']
        #     new_error = (receipts_to_match - receipts_new)
        #     print "ERROR: ", new_error
        #     output_list[loop_iter,0]=new_error
        #     output_list[loop_iter,1]=d_guess
        #     output_list[loop_iter,2]=ss_outputs['Yss']-ss_outputs['Iss']-ss_outputs['Css']-ss_outputs['Gss']
        #     np.savetxt('inc_tax_out.csv',output_list, delimiter=",")
        #     pickle.dump(output_list, open("output_list.pkl", "wb"))
        #     print 'Error in taxes:', error
        #     print 'Old income tax:', d_guess_old
        #     print 'New income tax:', d_guess
        #     print 'iteration: ', loop_iter
        #     loop_iter += 1

        analytical_mtrs, etr_params, mtrx_params, mtry_params = income_tax_params
        new_d_inc = 0.5025  # this is 0.453 if fix_transfers=False, 0.503 if True
        etr_params[:, 3] = new_d_inc
        mtrx_params[:, 3] = new_d_inc
        mtry_params[:, 3] = new_d_inc

        sim_params['etr_params'] = np.tile(
            np.reshape(etr_params, (run_params['S'], 1, etr_params.shape[1])),
            (1, run_params['BW'], 1))
        sim_params['mtrx_params'] = np.tile(
            np.reshape(mtrx_params,
                       (run_params['S'], 1, mtrx_params.shape[1])),
            (1, run_params['BW'], 1))
        sim_params['mtry_params'] = np.tile(
            np.reshape(mtry_params,
                       (run_params['S'], 1, mtry_params.shape[1])),
            (1, run_params['BW'], 1))
    '''
    ------------------------------------------------------------------------
        Run SS
    ------------------------------------------------------------------------
    '''
    income_tax_params, ss_params, iterative_params, chi_params = SS.create_steady_state_parameters(
        **sim_params)
    analytical_mtrs, etr_params, mtrx_params, mtry_params = income_tax_params
    '''
    ****
    CALL CALIBRATION here if boolean flagged
    ****
    '''
    if calibrate_model:
        chi_params = calibrate.chi_estimate(income_tax_params,
                                            ss_params,
                                            iterative_params,
                                            chi_params,
                                            baseline_dir=baseline_dir)

    # ss_outputs = SS_alt.run_SS(income_tax_params, ss_params, iterative_params,
    #                   chi_params, baseline, baseline_dir=baseline_dir)
    print 'Fix transfers = ', fix_transfers
    ss_outputs = SS.run_SS(income_tax_params,
                           ss_params,
                           iterative_params,
                           chi_params,
                           baseline,
                           fix_transfers=fix_transfers,
                           baseline_dir=baseline_dir)

    model_moments = ogusa.calibrate.calc_moments(ss_outputs,
                                                 sim_params['omega_SS'],
                                                 sim_params['lambdas'],
                                                 sim_params['S'],
                                                 sim_params['J'])

    scf, data = ogusa.wealth.get_wealth_data()
    wealth_moments = ogusa.wealth.compute_wealth_moments(
        scf, sim_params['lambdas'], sim_params['J'])

    print 'model moments: ', model_moments[:sim_params['J'] + 2]
    print 'data moments: ', wealth_moments
    '''
    ------------------------------------------------------------------------
        Pickle SS results and parameters
    ------------------------------------------------------------------------
    '''
    if baseline:
        utils.mkdirs(os.path.join(baseline_dir, "SS"))
        ss_dir = os.path.join(baseline_dir, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
        param_dir = os.path.join(baseline_dir, "run_parameters.pkl")
        pickle.dump(sim_params, open(param_dir, "wb"))
    else:
        utils.mkdirs(os.path.join(output_base, "SS"))
        ss_dir = os.path.join(output_base, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
        param_dir = os.path.join(output_base, "run_parameters.pkl")
        pickle.dump(sim_params, open(param_dir, "wb"))
Example #15
0
def runner(output_base,
           baseline_dir,
           test=False,
           time_path=True,
           baseline=True,
           iit_reform={},
           og_spec={},
           guid='',
           run_micro=True,
           data=None,
           client=None,
           num_workers=1):
    '''
    This function runs the OG-USA model, solving for the steady-state
    and (optionally) the time path equilibrium.

    Args:
        output_base (str): path to save output to
        baseline_dir (str): path where baseline model results are saved
        test (bool): whether to run model in test mode (which has
            a smaller state space and higher tolerances for solution)
        time_path (bool): whether to solve for the time path equlibrium
        baseline (bool): whether the model run is the baseline run
        iit_reform (dict): Tax-Calculator policy dictionary
        og_spec (dict): dictionary with updates to default
            parameters in OG-USA
        guid (str): id for OG-USA run
        run_micro (bool): whether to estimate tax functions from micro
            data or load saved parameters from pickle file
        data (str or Pandas DataFrame): path to or data to use in
            Tax-Calculator
        client (Dask client object): client
        num_workers (int): number of workers to use for parallelization
            with Dask

    Returns:
        None

    '''

    tick = time.time()
    # Create output directory structure
    ss_dir = os.path.join(output_base, "SS")
    tpi_dir = os.path.join(output_base, "TPI")
    dirs = [ss_dir, tpi_dir]
    for _dir in dirs:
        try:
            print("making dir: ", _dir)
            os.makedirs(_dir)
        except OSError:
            pass

    print('In runner, baseline is ', baseline)

    # Get parameter class
    # Note - set run_micro false when initially load class
    # Update later with call to spec.get_tax_function_parameters()
    spec = Specifications(run_micro=False,
                          output_base=output_base,
                          baseline_dir=baseline_dir,
                          test=test,
                          time_path=time_path,
                          baseline=baseline,
                          iit_reform=iit_reform,
                          guid=guid,
                          data=data,
                          client=client,
                          num_workers=num_workers)

    spec.update_specifications(og_spec)
    print('path for tax functions: ', spec.output_base)
    spec.get_tax_function_parameters(client, run_micro)
    '''
    ------------------------------------------------------------------------
        Run SS
    ------------------------------------------------------------------------
    '''
    ss_outputs = SS.run_SS(spec, client=client)
    '''
    ------------------------------------------------------------------------
        Pickle SS results
    ------------------------------------------------------------------------
    '''
    if baseline:
        utils.mkdirs(os.path.join(baseline_dir, "SS"))
        ss_dir = os.path.join(baseline_dir, "SS", "SS_vars.pkl")
        with open(ss_dir, "wb") as f:
            pickle.dump(ss_outputs, f)
        print('JUST SAVED SS output to ', ss_dir)
        # Save pickle with parameter values for the run
        param_dir = os.path.join(baseline_dir, "model_params.pkl")
        with open(param_dir, "wb") as f:
            cloudpickle.dump((spec), f)
    else:
        utils.mkdirs(os.path.join(output_base, "SS"))
        ss_dir = os.path.join(output_base, "SS", "SS_vars.pkl")
        with open(ss_dir, "wb") as f:
            pickle.dump(ss_outputs, f)
        # Save pickle with parameter values for the run
        param_dir = os.path.join(output_base, "model_params.pkl")
        with open(param_dir, "wb") as f:
            cloudpickle.dump((spec), f)

    if time_path:
        '''
        ------------------------------------------------------------------------
            Run the TPI simulation
        ------------------------------------------------------------------------
        '''
        tpi_output = TPI.run_TPI(spec, client=client)
        '''
        ------------------------------------------------------------------------
            Pickle TPI results
        ------------------------------------------------------------------------
        '''
        tpi_dir = os.path.join(output_base, "TPI")
        utils.mkdirs(tpi_dir)
        tpi_vars = os.path.join(tpi_dir, "TPI_vars.pkl")
        with open(tpi_vars, "wb") as f:
            pickle.dump(tpi_output, f)

        print("Time path iteration complete.")
    print("It took {0} seconds to get that part done.".format(time.time() -
                                                              tick))
Example #16
0
def runner(output_base,
           baseline_dir,
           baseline=False,
           analytical_mtrs=True,
           age_specific=False,
           reform={},
           user_params={},
           guid='',
           run_micro=True):

    #from ogusa import parameters, wealth, labor, demographics, income
    from ogusa import parameters, wealth, labor, demog, income, utils
    from ogusa import txfunc

    tick = time.time()

    #Create output directory structure
    saved_moments_dir = os.path.join(output_base, "Saved_moments")
    ssinit_dir = os.path.join(output_base, "SSinit")
    tpiinit_dir = os.path.join(output_base, "TPIinit")
    dirs = [saved_moments_dir, ssinit_dir, tpiinit_dir]
    for _dir in dirs:
        try:
            print "making dir: ", _dir
            os.makedirs(_dir)
        except OSError as oe:
            pass

    if run_micro:
        txfunc.get_tax_func_estimate(baseline=baseline,
                                     analytical_mtrs=analytical_mtrs,
                                     age_specific=age_specific,
                                     start_year=user_params['start_year'],
                                     reform=reform,
                                     guid=guid)
    print("in runner, baseline is ", baseline)
    run_params = ogusa.parameters.get_parameters(baseline=baseline, guid=guid)
    run_params['analytical_mtrs'] = analytical_mtrs

    # Modify ogusa parameters based on user input
    if 'frisch' in user_params:
        print "updating fricsh and associated"
        b_ellipse, upsilon = ogusa.elliptical_u_est.estimation(
            user_params['frisch'], run_params['ltilde'])
        run_params['b_ellipse'] = b_ellipse
        run_params['upsilon'] = upsilon
        run_params.update(user_params)

    # Modify ogusa parameters based on user input
    if 'g_y_annual' in user_params:
        print "updating g_y_annual and associated"
        g_y = (1 + user_params['g_y_annual'])**(
            float(ending_age - starting_age) / S) - 1
        run_params['g_y'] = g_y
        run_params.update(user_params)

    from ogusa import SS, TPI
    # Generate Wealth data moments
    wealth.get_wealth_data(run_params['lambdas'],
                           run_params['J'],
                           run_params['flag_graphs'],
                           output_dir=output_base)

    # Generate labor data moments
    labor.labor_data_moments(run_params['flag_graphs'], output_dir=output_base)

    calibrate_model = False
    # List of parameter names that will not be changing (unless we decide to
    # change them for a tax experiment)

    param_names = [
        'S', 'J', 'T', 'BW', 'lambdas', 'starting_age', 'ending_age', 'beta',
        'sigma', 'alpha', 'nu', 'Z', 'delta', 'E', 'ltilde', 'g_y', 'maxiter',
        'mindist_SS', 'mindist_TPI', 'analytical_mtrs', 'b_ellipse',
        'k_ellipse', 'upsilon', 'chi_b_guess', 'chi_n_guess', 'etr_params',
        'mtrx_params', 'mtry_params', 'tau_payroll', 'tau_bq', 'retire',
        'mean_income_data', 'g_n_vector', 'h_wealth', 'p_wealth', 'm_wealth',
        'omega', 'g_n_ss', 'omega_SS', 'surv_rate', 'e', 'rho'
    ]
    '''
    ------------------------------------------------------------------------
        Run SS 
    ------------------------------------------------------------------------
    '''

    sim_params = {}
    for key in param_names:
        sim_params[key] = run_params[key]

    sim_params['output_dir'] = output_base
    sim_params['run_params'] = run_params

    income_tax_params, ss_parameters, iterative_params, chi_params = SS.create_steady_state_parameters(
        **sim_params)

    ss_outputs = SS.run_SS(income_tax_params,
                           ss_parameters,
                           iterative_params,
                           chi_params,
                           baseline,
                           baseline_dir=baseline_dir)
    '''
    ------------------------------------------------------------------------
        Pickle SS results 
    ------------------------------------------------------------------------
    '''
    if baseline:
        utils.mkdirs(os.path.join(baseline_dir, "SS"))
        ss_dir = os.path.join(baseline_dir, "SS/ss_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
    else:
        utils.mkdirs(os.path.join(output_dir, "SS"))
        ss_dir = os.path.join(output_dir, "SS/ss_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
    '''
    ------------------------------------------------------------------------
        Run the baseline TPI simulation
    ------------------------------------------------------------------------
    '''

    sim_params['input_dir'] = output_base
    sim_params['baseline_dir'] = baseline_dir

    income_tax_params, tpi_params, iterative_params, initial_values, SS_values = TPI.create_tpi_params(
        **sim_params)

    # ss_outputs['income_tax_params'] = income_tax_params
    # ss_outputs['wealth_tax_params'] = wealth_tax_params
    # ss_outputs['ellipse_params'] = ellipse_params
    # ss_outputs['parameters'] = parameters
    # ss_outputs['N_tilde'] = N_tilde
    # ss_outputs['omega_stationary'] = omega_stationary
    # ss_outputs['K0'] = K0
    # ss_outputs['b_sinit'] = b_sinit
    # ss_outputs['b_splus1init'] = b_splus1init
    # ss_outputs['L0'] = L0
    # ss_outputs['Y0'] = Y0
    # ss_outputs['r0'] = r0
    # ss_outputs['BQ0'] = BQ0
    # ss_outputs['T_H_0'] = T_H_0
    # ss_outputs['factor_ss'] = factor
    # ss_outputs['tax0'] = tax0
    # ss_outputs['c0'] = c0
    # ss_outputs['initial_b'] = initial_b
    # ss_outputs['initial_n'] = initial_n
    # ss_outputs['tau_bq'] = tau_bq
    # ss_outputs['g_n_vector'] = g_n_vector
    # ss_outputs['output_dir'] = output_base

    # with open("ss_outputs.pkl", 'wb') as fp:
    #     pickle.dump(ss_outputs, fp)

    w_path, r_path, T_H_path, BQ_path, Y_path = TPI.run_TPI(
        income_tax_params,
        tpi_params,
        iterative_params,
        initial_values,
        SS_values,
        output_dir=output_base)

    print "getting to here...."
    TPI.TP_solutions(w_path, r_path, T_H_path, BQ_path, **ss_outputs)
    print "took {0} seconds to get that part done.".format(time.time() - tick)
Example #17
0
def runner_SS(
    output_base,
    baseline_dir,
    baseline=False,
    analytical_mtrs=False,
    age_specific=False,
    reform={},
    user_params={},
    guid="",
    run_micro=True,
):

    from ogusa import parameters, demographics, income, utils
    from ogusa import txfunc

    tick = time.time()

    # Create output directory structure
    saved_moments_dir = os.path.join(output_base, "Saved_moments")
    ss_dir = os.path.join(output_base, "SS")
    tpi_dir = os.path.join(output_base, "TPI")
    dirs = [saved_moments_dir, ss_dir, tpi_dir]
    for _dir in dirs:
        try:
            print "making dir: ", _dir
            os.makedirs(_dir)
        except OSError as oe:
            pass

    if run_micro:
        txfunc.get_tax_func_estimate(
            baseline=baseline,
            analytical_mtrs=analytical_mtrs,
            age_specific=age_specific,
            start_year=user_params["start_year"],
            reform=reform,
            guid=guid,
        )
    print ("in runner, baseline is ", baseline)
    run_params = ogusa.parameters.get_parameters(baseline=baseline, guid=guid)
    run_params["analytical_mtrs"] = analytical_mtrs

    # Modify ogusa parameters based on user input
    if "frisch" in user_params:
        print "updating fricsh and associated"
        b_ellipse, upsilon = ogusa.elliptical_u_est.estimation(user_params["frisch"], run_params["ltilde"])
        run_params["b_ellipse"] = b_ellipse
        run_params["upsilon"] = upsilon
        run_params.update(user_params)

    # Modify ogusa parameters based on user input
    if "g_y_annual" in user_params:
        print "updating g_y_annual and associated"
        ending_age = run_params["ending_age"]
        starting_age = run_params["starting_age"]
        S = run_params["S"]
        g_y = (1 + user_params["g_y_annual"]) ** (float(ending_age - starting_age) / S) - 1
        run_params["g_y"] = g_y
        run_params.update(user_params)

    from ogusa import SS, TPI

    """
    ****
    CALL CALIBRATION here if boolean flagged

    ****
    """
    calibrate_model = False
    # if calibrate_model:
    #     chi_b, chi_n = calibrate.(income_tax_params, ss_params, iterative_params, chi_params, baseline,
    #                                  calibrate_model, output_dir=output_base, baseline_dir=baseline_dir)

    # List of parameter names that will not be changing (unless we decide to
    # change them for a tax experiment)

    param_names = [
        "S",
        "J",
        "T",
        "BW",
        "lambdas",
        "starting_age",
        "ending_age",
        "beta",
        "sigma",
        "alpha",
        "nu",
        "Z",
        "delta",
        "E",
        "ltilde",
        "g_y",
        "maxiter",
        "mindist_SS",
        "mindist_TPI",
        "analytical_mtrs",
        "b_ellipse",
        "k_ellipse",
        "upsilon",
        "chi_b_guess",
        "chi_n_guess",
        "etr_params",
        "mtrx_params",
        "mtry_params",
        "tau_payroll",
        "tau_bq",
        "retire",
        "mean_income_data",
        "g_n_vector",
        "h_wealth",
        "p_wealth",
        "m_wealth",
        "omega",
        "g_n_ss",
        "omega_SS",
        "surv_rate",
        "imm_rates",
        "e",
        "rho",
        "omega_S_preTP",
    ]

    """
    ------------------------------------------------------------------------
        Run SS
    ------------------------------------------------------------------------
    """

    sim_params = {}
    for key in param_names:
        sim_params[key] = run_params[key]

    sim_params["output_dir"] = output_base
    sim_params["run_params"] = run_params

    income_tax_params, ss_params, iterative_params, chi_params = SS.create_steady_state_parameters(**sim_params)

    ss_outputs = SS.run_SS(
        income_tax_params, ss_params, iterative_params, chi_params, baseline, baseline_dir=baseline_dir
    )

    """
    ------------------------------------------------------------------------
        Pickle SS results
    ------------------------------------------------------------------------
    """
    if baseline:
        utils.mkdirs(os.path.join(baseline_dir, "SS"))
        ss_dir = os.path.join(baseline_dir, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
    else:
        utils.mkdirs(os.path.join(output_base, "SS"))
        ss_dir = os.path.join(output_base, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
Example #18
0
def run_model(meta_param_dict, adjustment):
    '''
    Initializes classes from OG-USA that compute the model under
    different policies.  Then calls function get output objects.
    '''
    meta_params = MetaParams()
    meta_params.adjust(meta_param_dict)
    if meta_params.data_source == "PUF":
        data = retrieve_puf(AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY)
    else:
        data = "cps"
    # Create output directory structure
    base_dir = os.path.join(CUR_DIR, BASELINE_DIR)
    reform_dir = os.path.join(CUR_DIR, REFORM_DIR)
    dirs = [base_dir, reform_dir]
    for _dir in dirs:
        utils.mkdirs(_dir)
    # Dask parmeters
    client = None
    num_workers = 1

    # whether to estimate tax functions from microdata
    run_micro = True

    # Solve baseline model
    base_spec = {
        'start_year': meta_param_dict['year'],
        'debt_ratio_ss': 2.0,
        'r_gov_scale': 1.0,
        'r_gov_shift': 0.02,
        'zeta_D': [0.4],
        'zeta_K': [0.1],
        'initial_debt_ratio': 0.78,
        'initial_foreign_debt_ratio': 0.4,
        'tax_func_type': 'linear',
        'age_specific': False
    }
    base_params = Specifications(run_micro=False,
                                 output_base=base_dir,
                                 baseline_dir=base_dir,
                                 test=False,
                                 time_path=False,
                                 baseline=True,
                                 iit_reform={},
                                 guid='',
                                 data=data,
                                 client=client,
                                 num_workers=num_workers)
    base_params.update_specifications(base_spec)
    base_params.get_tax_function_parameters(client, run_micro)
    base_ss = SS.run_SS(base_params, client=client)
    utils.mkdirs(os.path.join(base_dir, "SS"))
    ss_dir = os.path.join(base_dir, "SS", "SS_vars.pkl")
    with open(ss_dir, "wb") as f:
        pickle.dump(base_ss, f)

    # Solve reform model
    reform_spec = base_spec
    reform_spec.update(adjustment['ogusa'])
    reform_params = Specifications(run_micro=False,
                                   output_base=reform_dir,
                                   baseline_dir=base_dir,
                                   test=False,
                                   time_path=False,
                                   baseline=False,
                                   iit_reform={},
                                   guid='',
                                   data=data,
                                   client=client,
                                   num_workers=num_workers)
    reform_params.update_specifications(reform_spec)
    reform_params.get_tax_function_parameters(client, run_micro)
    reform_ss = SS.run_SS(reform_params, client=client)

    comp_dict = comp_output(base_ss, base_params, reform_ss, reform_params)

    return comp_dict
Example #19
0
def test_run_TPI():
    # Test TPI.run_TPI function.  Provide inputs to function and
    # ensure that output returned matches what it has been before.
    input_tuple = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data', 'run_TPI_inputs.pkl'))
    (income_tax_params, tpi_params, iterative_params, small_open_params,
     initial_values, SS_values, fiscal_params, biz_tax_params,
     output_dir, baseline_spending) = input_tuple
    tpi_params = tpi_params + [True]
    initial_values = initial_values + (0.0,)

    p = Specifications()
    (J, S, T, BW, p.beta, p.sigma, p.alpha, p.gamma, p.epsilon,
     Z, p.delta, p.ltilde, p.nu, p.g_y, p.g_n, tau_b, delta_tau,
     tau_payroll, tau_bq, p.rho, p.omega, N_tilde, lambdas,
     p.imm_rates, p.e, retire, p.mean_income_data, factor, h_wealth,
     p_wealth, m_wealth, p.b_ellipse, p.upsilon, p.chi_b, p.chi_n,
     theta, p.baseline) = tpi_params

    new_param_values = {
        'J': J,
        'S': S,
        'T': T,
        'eta': (np.ones((S, J)) / (S * J))
    }
    # update parameters instance with new values for test
    p.update_specifications(new_param_values, raise_errors=False)
    (J, S, T, BW, p.beta, p.sigma, p.alpha, p.gamma, p.epsilon,
     Z, p.delta, p.ltilde, p.nu, p.g_y, p.g_n, tau_b, delta_tau,
     tau_payroll, tau_bq, p.rho, p.omega, N_tilde, lambdas,
     p.imm_rates, p.e, retire, p.mean_income_data, factor, h_wealth,
     p_wealth, m_wealth, p.b_ellipse, p.upsilon, p.chi_b, p.chi_n,
     theta, p.baseline) = tpi_params
    p.eta = p.omega.reshape(T + S, S, 1) * lambdas.reshape(1, J)
    p.Z = np.ones(p.T + p.S) * Z
    p.tau_bq = np.ones(p.T + p.S) * 0.0
    p.tau_payroll = np.ones(p.T + p.S) * tau_payroll
    p.tau_b = np.ones(p.T + p.S) * tau_b
    p.delta_tau = np.ones(p.T + p.S) * delta_tau
    p.h_wealth = np.ones(p.T + p.S) * h_wealth
    p.p_wealth = np.ones(p.T + p.S) * p_wealth
    p.m_wealth = np.ones(p.T + p.S) * m_wealth
    p.retire = (np.ones(p.T + p.S) * retire).astype(int)
    p.small_open, ss_firm_r, ss_hh_r = small_open_params
    p.ss_firm_r = np.ones(p.T + p.S) * ss_firm_r
    p.ss_hh_r = np.ones(p.T + p.S) * ss_hh_r
    p.maxiter, p.mindist_SS, p.mindist_TPI = iterative_params
    (p.budget_balance, alpha_T, alpha_G, p.tG1, p.tG2, p.rho_G,
     p.debt_ratio_ss) = fiscal_params
    p.alpha_T = np.concatenate((alpha_T, np.ones(40) * alpha_T[-1]))
    p.alpha_G = np.concatenate((alpha_G, np.ones(40) * alpha_G[-1]))
    (tau_b, delta_tau) = biz_tax_params
    p.tau_b = np.ones(p.T + p.S) * tau_b
    p.delta_tau = np.ones(p.T + p.S) * delta_tau
    p.analytical_mtrs, etr_params, mtrx_params, mtry_params =\
        income_tax_params
    p.etr_params = np.transpose(etr_params, (1, 0, 2))[:p.T, :, :]
    p.mtrx_params = np.transpose(mtrx_params, (1, 0, 2))[:p.T, :, :]
    p.mtry_params = np.transpose(mtry_params, (1, 0, 2))[:p.T, :, :]
    p.lambdas = lambdas.reshape(p.J, 1)
    p.output = output_dir
    p.baseline_spending = baseline_spending
    p.frac_tax_payroll = 0.5 * np.ones(p.T + p.S)
    p.num_workers = 1
    (K0, b_sinit, b_splus1init, factor, initial_b, initial_n,
     p.omega_S_preTP, initial_debt, D0) = initial_values

    # Need to run SS first to get results
    ss_outputs = SS.run_SS(p, None)

    if p.baseline:
        utils.mkdirs(os.path.join(p.baseline_dir, "SS"))
        ss_dir = os.path.join(p.baseline_dir, "SS/SS_vars.pkl")
        with open(ss_dir, "wb") as f:
            pickle.dump(ss_outputs, f)
    else:
        utils.mkdirs(os.path.join(p.output_base, "SS"))
        ss_dir = os.path.join(p.output_base, "SS/SS_vars.pkl")
        with open(ss_dir, "wb") as f:
            pickle.dump(ss_outputs, f)

    test_dict = TPI.run_TPI(p, None)

    expected_dict = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data', 'run_TPI_outputs.pkl'))

    # delete values key-value pairs that are not in both dicts
    del expected_dict['I_total']
    del test_dict['etr_path'], test_dict['mtrx_path'], test_dict['mtry_path']
    del test_dict['bmat_s']
    test_dict['b_mat'] = test_dict.pop('bmat_splus1')
    test_dict['REVENUE'] = test_dict.pop('total_revenue')
    test_dict['T_H'] = test_dict.pop('TR')
    test_dict['IITpayroll_revenue'] = (test_dict['REVENUE'][:160] -
                                       test_dict['business_revenue'])
    del test_dict['T_P'], test_dict['T_BQ'], test_dict['T_W']
    del test_dict['y_before_tax_mat'], test_dict['K_f'], test_dict['K_d']
    del test_dict['D_d'], test_dict['D_f']
    del test_dict['new_borrowing_f'], test_dict['debt_service_f']
    del test_dict['iit_revenue'], test_dict['payroll_tax_revenue']
    del test_dict['resource_constraint_error'], test_dict['T_C']
    del test_dict['r_gov'], test_dict['r_hh'], test_dict['tr_path']

    for k, v in expected_dict.items():
        try:
            assert(np.allclose(test_dict[k], v, rtol=1e-04, atol=1e-04))
        except ValueError:
            assert(np.allclose(test_dict[k], v[:p.T, :, :], rtol=1e-04,
                               atol=1e-04))
Example #20
0
def run_TPI(p, client=None):

    # unpack tuples of parameters
    initial_values, ss_vars, theta, baseline_values = get_initial_SS_values(p)
    (B0, b_sinit, b_splus1init, factor, initial_b, initial_n,
     D0) = initial_values
    (T_Hbaseline, Gbaseline) = baseline_values

    print('Government spending breakpoints are tG1: ', p.tG1, '; and tG2:',
          p.tG2)

    # Initialize guesses at time paths
    # Make array of initial guesses for labor supply and savings
    domain = np.linspace(0, p.T, p.T)
    domain2 = np.tile(domain.reshape(p.T, 1, 1), (1, p.S, p.J))
    ending_b = ss_vars['bssmat_splus1']
    guesses_b = (-1 / (domain2 + 1)) * (ending_b - initial_b) + ending_b
    ending_b_tail = np.tile(ending_b.reshape(1, p.S, p.J), (p.S, 1, 1))
    guesses_b = np.append(guesses_b, ending_b_tail, axis=0)

    domain3 = np.tile(np.linspace(0, 1, p.T).reshape(p.T, 1, 1), (1, p.S, p.J))
    guesses_n = domain3 * (ss_vars['nssmat'] - initial_n) + initial_n
    ending_n_tail = np.tile(ss_vars['nssmat'].reshape(1, p.S, p.J),
                            (p.S, 1, 1))
    guesses_n = np.append(guesses_n, ending_n_tail, axis=0)
    b_mat = guesses_b
    n_mat = guesses_n
    ind = np.arange(p.S)

    L_init = np.ones((p.T + p.S, )) * ss_vars['Lss']
    B_init = np.ones((p.T + p.S, )) * ss_vars['Bss']
    L_init[:p.T] = aggr.get_L(n_mat[:p.T], p, 'TPI')
    B_init[1:p.T] = aggr.get_K(b_mat[:p.T], p, 'TPI', False)[:p.T - 1]
    B_init[0] = B0

    if not p.small_open:
        if p.budget_balance:
            K_init = B_init
        else:
            K_init = B_init * ss_vars['Kss'] / ss_vars['Bss']
    else:
        K_init = firm.get_K(L_init, p.firm_r, p, 'TPI')

    K = K_init
    K_d = K_init * ss_vars['K_d_ss'] / ss_vars['Kss']
    K_f = K_init * ss_vars['K_f_ss'] / ss_vars['Kss']

    L = L_init
    B = B_init
    Y = np.zeros_like(K)
    Y[:p.T] = firm.get_Y(K[:p.T], L[:p.T], p, 'TPI')
    Y[p.T:] = ss_vars['Yss']
    r = np.zeros_like(Y)
    if not p.small_open:
        r[:p.T] = firm.get_r(Y[:p.T], K[:p.T], p, 'TPI')
        r[p.T:] = ss_vars['rss']
    else:
        r = p.firm_r
    # compute w
    w = np.zeros_like(r)
    w[:p.T] = firm.get_w_from_r(r[:p.T], p, 'TPI')
    w[p.T:] = ss_vars['wss']
    r_gov = fiscal.get_r_gov(r, p)
    if p.budget_balance:
        r_hh = r
    else:
        r_hh = aggr.get_r_hh(r, r_gov, K, ss_vars['Dss'])
    if p.small_open:
        r_hh = p.hh_r

    BQ0 = aggr.get_BQ(r[0], initial_b, None, p, 'SS', True)
    if not p.use_zeta:
        BQ = np.zeros((p.T + p.S, p.J))
        for j in range(p.J):
            BQ[:, j] = (list(np.linspace(BQ0[j], ss_vars['BQss'][j], p.T)) +
                        [ss_vars['BQss'][j]] * p.S)
        BQ = np.array(BQ)
    else:
        BQ = (list(np.linspace(BQ0, ss_vars['BQss'], p.T)) +
              [ss_vars['BQss']] * p.S)
        BQ = np.array(BQ)
    if p.budget_balance:
        if np.abs(ss_vars['T_Hss']) < 1e-13:
            T_Hss2 = 0.0  # sometimes SS is very small but not zero,
            # even if taxes are zero, this get's rid of the approximation
            # error, which affects the perc changes below
        else:
            T_Hss2 = ss_vars['T_Hss']
        T_H = np.ones(p.T + p.S) * T_Hss2
        total_revenue = T_H
        G = np.zeros(p.T + p.S)
    elif not p.baseline_spending:
        T_H = p.alpha_T * Y
        G = np.ones(p.T + p.S) * ss_vars['Gss']
    elif p.baseline_spending:
        T_H = T_Hbaseline
        T_H_new = p.T_H  # Need to set T_H_new for later reference
        G = Gbaseline
        G_0 = Gbaseline[0]

    # Initialize some starting values
    if p.budget_balance:
        D = np.zeros(p.T + p.S)
    else:
        D = np.ones(p.T + p.S) * ss_vars['Dss']
    if ss_vars['Dss'] == 0:
        D_d = np.zeros(p.T + p.S)
        D_f = np.zeros(p.T + p.S)
    else:
        D_d = D * ss_vars['D_d_ss'] / ss_vars['Dss']
        D_f = D * ss_vars['D_f_ss'] / ss_vars['Dss']
    total_revenue = np.ones(p.T + p.S) * ss_vars['total_revenue_ss']

    TPIiter = 0
    TPIdist = 10
    euler_errors = np.zeros((p.T, 2 * p.S, p.J))
    TPIdist_vec = np.zeros(p.maxiter)

    # TPI loop
    while (TPIiter < p.maxiter) and (TPIdist >= p.mindist_TPI):
        r_gov[:p.T] = fiscal.get_r_gov(r[:p.T], p)
        if p.budget_balance:
            r_hh[:p.T] = r[:p.T]
        else:
            K[:p.T] = firm.get_K_from_Y(Y[:p.T], r[:p.T], p, 'TPI')
            r_hh[:p.T] = aggr.get_r_hh(r[:p.T], r_gov[:p.T], K[:p.T], D[:p.T])
        if p.small_open:
            r_hh[:p.T] = p.hh_r[:p.T]

        outer_loop_vars = (r, w, r_hh, BQ, T_H, theta)

        euler_errors = np.zeros((p.T, 2 * p.S, p.J))
        lazy_values = []
        for j in range(p.J):
            guesses = (guesses_b[:, :, j], guesses_n[:, :, j])
            lazy_values.append(
                delayed(inner_loop)(guesses, outer_loop_vars, initial_values,
                                    j, ind, p))
        results = compute(*lazy_values,
                          scheduler=dask.multiprocessing.get,
                          num_workers=p.num_workers)
        for j, result in enumerate(results):
            euler_errors[:, :, j], b_mat[:, :, j], n_mat[:, :, j] = result

        bmat_s = np.zeros((p.T, p.S, p.J))
        bmat_s[0, 1:, :] = initial_b[:-1, :]
        bmat_s[1:, 1:, :] = b_mat[:p.T - 1, :-1, :]
        bmat_splus1 = np.zeros((p.T, p.S, p.J))
        bmat_splus1[:, :, :] = b_mat[:p.T, :, :]

        etr_params_4D = np.tile(
            p.etr_params.reshape(p.T, p.S, 1, p.etr_params.shape[2]),
            (1, 1, p.J, 1))
        bqmat = household.get_bq(BQ, None, p, 'TPI')
        tax_mat = tax.total_taxes(r_hh[:p.T], w[:p.T], bmat_s,
                                  n_mat[:p.T, :, :], bqmat[:p.T, :, :], factor,
                                  T_H[:p.T], theta, 0, None, False, 'TPI', p.e,
                                  etr_params_4D, p)
        r_hh_path = utils.to_timepath_shape(r_hh, p)
        wpath = utils.to_timepath_shape(w, p)
        c_mat = household.get_cons(r_hh_path[:p.T, :, :], wpath[:p.T, :, :],
                                   bmat_s, bmat_splus1, n_mat[:p.T, :, :],
                                   bqmat[:p.T, :, :], tax_mat, p.e,
                                   p.tau_c[:p.T, :, :], p)
        y_before_tax_mat = (r_hh_path[:p.T, :, :] * bmat_s[:p.T, :, :] +
                            wpath[:p.T, :, :] * p.e * n_mat[:p.T, :, :])

        if not p.baseline_spending and not p.budget_balance:
            Y[:p.T] = T_H[:p.T] / p.alpha_T[:p.T]  # maybe unecessary

            (total_rev, T_Ipath, T_Ppath, T_BQpath,
             T_Wpath, T_Cpath, business_revenue) = aggr.revenue(
                 r_hh[:p.T], w[:p.T], bmat_s, n_mat[:p.T, :, :],
                 bqmat[:p.T, :, :], c_mat[:p.T, :, :], Y[:p.T], L[:p.T],
                 K[:p.T], factor, theta, etr_params_4D, p, 'TPI')
            total_revenue[:p.T] = total_rev
            # set intial debt value
            if p.baseline:
                D0 = p.initial_debt_ratio * Y[0]
            if not p.baseline_spending:
                G_0 = p.alpha_G[0] * Y[0]
            dg_fixed_values = (Y, total_revenue, T_H, D0, G_0)
            Dnew, G[:p.T] = fiscal.D_G_path(r_gov, dg_fixed_values, Gbaseline,
                                            p)
            # Fix initial amount of foreign debt holding
            D_f[0] = p.initial_foreign_debt_ratio * Dnew[0]
            for t in range(1, p.T):
                D_f[t + 1] = (D_f[t] / (np.exp(p.g_y) * (1 + p.g_n[t + 1])) +
                              p.zeta_D[t] * (Dnew[t + 1] -
                                             (Dnew[t] / (np.exp(p.g_y) *
                                                         (1 + p.g_n[t + 1])))))
            D_d[:p.T] = Dnew[:p.T] - D_f[:p.T]
        else:  # if budget balance
            Dnew = np.zeros(p.T + 1)
            G[:p.T] = np.zeros(p.T)
            D_f[:p.T] = np.zeros(p.T)
            D_d[:p.T] = np.zeros(p.T)

        L[:p.T] = aggr.get_L(n_mat[:p.T], p, 'TPI')
        B[1:p.T] = aggr.get_K(bmat_splus1[:p.T], p, 'TPI', False)[:p.T - 1]
        K_demand_open = firm.get_K(L[:p.T], p.firm_r[:p.T], p, 'TPI')
        K_d[:p.T] = B[:p.T] - D_d[:p.T]
        if np.any(K_d < 0):
            print('K_d has negative elements. Setting them ' +
                  'positive to prevent NAN.')
            K_d[:p.T] = np.fmax(K_d[:p.T], 0.05 * B[:p.T])
        K_f[:p.T] = p.zeta_K[:p.T] * (K_demand_open - B[:p.T] + D_d[:p.T])
        K = K_f + K_d
        if np.any(B) < 0:
            print('B has negative elements. B[0:9]:', B[0:9])
            print('B[T-2:T]:', B[p.T - 2, p.T])
        if p.small_open:
            K[:p.T] = K_demand_open
        Ynew = firm.get_Y(K[:p.T], L[:p.T], p, 'TPI')
        rnew = r.copy()
        if not p.small_open:
            rnew[:p.T] = firm.get_r(Ynew[:p.T], K[:p.T], p, 'TPI')
        else:
            rnew[:p.T] = r[:p.T].copy()
        r_gov_new = fiscal.get_r_gov(rnew, p)
        if p.budget_balance:
            r_hh_new = rnew[:p.T]
        else:
            r_hh_new = aggr.get_r_hh(rnew[:p.T], r_gov_new[:p.T], K[:p.T],
                                     Dnew[:p.T])
        if p.small_open:
            r_hh_new = p.hh_r[:p.T]
        # compute w
        wnew = firm.get_w_from_r(rnew[:p.T], p, 'TPI')

        b_mat_shift = np.append(np.reshape(initial_b, (1, p.S, p.J)),
                                b_mat[:p.T - 1, :, :],
                                axis=0)
        BQnew = aggr.get_BQ(r_hh_new[:p.T], b_mat_shift, None, p, 'TPI', False)
        bqmat_new = household.get_bq(BQnew, None, p, 'TPI')
        (total_rev, T_Ipath, T_Ppath, T_BQpath,
         T_Wpath, T_Cpath, business_revenue) = aggr.revenue(
             r_hh_new[:p.T], wnew[:p.T], bmat_s, n_mat[:p.T, :, :],
             bqmat_new[:p.T, :, :], c_mat[:p.T, :, :], Ynew[:p.T], L[:p.T],
             K[:p.T], factor, theta, etr_params_4D, p, 'TPI')
        total_revenue[:p.T] = total_rev

        if p.budget_balance:
            T_H_new = total_revenue
        elif not p.baseline_spending:
            T_H_new = p.alpha_T[:p.T] * Ynew[:p.T]
        # If baseline_spending==True, no need to update T_H, it's fixed

        # update vars for next iteration
        w[:p.T] = wnew[:p.T]
        r[:p.T] = utils.convex_combo(rnew[:p.T], r[:p.T], p.nu)
        BQ[:p.T] = utils.convex_combo(BQnew[:p.T], BQ[:p.T], p.nu)
        D[:p.T] = Dnew[:p.T]
        Y[:p.T] = utils.convex_combo(Ynew[:p.T], Y[:p.T], p.nu)
        if not p.baseline_spending:
            T_H[:p.T] = utils.convex_combo(T_H_new[:p.T], T_H[:p.T], p.nu)
        guesses_b = utils.convex_combo(b_mat, guesses_b, p.nu)
        guesses_n = utils.convex_combo(n_mat, guesses_n, p.nu)
        print('r diff: ', (rnew[:p.T] - r[:p.T]).max(),
              (rnew[:p.T] - r[:p.T]).min())
        print('BQ diff: ', (BQnew[:p.T] - BQ[:p.T]).max(),
              (BQnew[:p.T] - BQ[:p.T]).min())
        print('T_H diff: ', (T_H_new[:p.T] - T_H[:p.T]).max(),
              (T_H_new[:p.T] - T_H[:p.T]).min())
        print('Y diff: ', (Ynew[:p.T] - Y[:p.T]).max(),
              (Ynew[:p.T] - Y[:p.T]).min())
        if not p.baseline_spending:
            if T_H.all() != 0:
                TPIdist = np.array(
                    list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) + list(
                        utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                    list(utils.pct_diff_func(T_H_new[:p.T], T_H[:p.T]))).max()
            else:
                TPIdist = np.array(
                    list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) + list(
                        utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                    list(np.abs(T_H[:p.T]))).max()
        else:
            TPIdist = np.array(
                list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) +
                list(utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                list(utils.pct_diff_func(Ynew[:p.T], Y[:p.T]))).max()

        TPIdist_vec[TPIiter] = TPIdist
        # After T=10, if cycling occurs, drop the value of nu
        # wait til after T=10 or so, because sometimes there is a jump up
        # in the first couple iterations
        # if TPIiter > 10:
        #     if TPIdist_vec[TPIiter] - TPIdist_vec[TPIiter - 1] > 0:
        #         nu /= 2
        #         print 'New Value of nu:', nu
        TPIiter += 1
        print('Iteration:', TPIiter)
        print('\tDistance:', TPIdist)

    # Compute effective and marginal tax rates for all agents
    mtrx_params_4D = np.tile(
        p.mtrx_params.reshape(p.T, p.S, 1, p.mtrx_params.shape[2]),
        (1, 1, p.J, 1))
    mtry_params_4D = np.tile(
        p.mtry_params.reshape(p.T, p.S, 1, p.mtry_params.shape[2]),
        (1, 1, p.J, 1))

    e_3D = np.tile(p.e.reshape(1, p.S, p.J), (p.T, 1, 1))
    mtry_path = tax.MTR_income(r_hh_path[:p.T], wpath[:p.T],
                               bmat_s[:p.T, :, :], n_mat[:p.T, :, :], factor,
                               True, e_3D, etr_params_4D, mtry_params_4D, p)
    mtrx_path = tax.MTR_income(r_hh_path[:p.T], wpath[:p.T],
                               bmat_s[:p.T, :, :], n_mat[:p.T, :, :], factor,
                               False, e_3D, etr_params_4D, mtrx_params_4D, p)
    etr_path = tax.ETR_income(r_hh_path[:p.T], wpath[:p.T], bmat_s[:p.T, :, :],
                              n_mat[:p.T, :, :], factor, e_3D, etr_params_4D,
                              p)

    C = aggr.get_C(c_mat, p, 'TPI')
    # Note that implicity in this computation is that immigrants'
    # wealth is all in the form of private capital
    I_d = aggr.get_I(bmat_splus1[:p.T], K_d[1:p.T + 1], K_d[:p.T], p, 'TPI')
    I = aggr.get_I(bmat_splus1[:p.T], K[1:p.T + 1], K[:p.T], p, 'TPI')
    # solve resource constraint
    # net foreign borrowing
    new_borrowing_f = (D_f[1:p.T + 1] * np.exp(p.g_y) *
                       (1 + p.g_n[1:p.T + 1]) - D_f[:p.T])
    debt_service_f = D_f * r_hh
    RC_error = aggr.resource_constraint(Y[:p.T - 1], C[:p.T - 1], G[:p.T - 1],
                                        I_d[:p.T - 1], K_f[:p.T - 1],
                                        new_borrowing_f[:p.T - 1],
                                        debt_service_f[:p.T - 1],
                                        r_hh[:p.T - 1], p)

    # Compute total investment (not just domestic)
    I_total = ((1 + p.g_n[:p.T]) * np.exp(p.g_y) * K[1:p.T + 1] -
               (1.0 - p.delta) * K[:p.T])

    rce_max = np.amax(np.abs(RC_error))
    print('Max absolute value resource constraint error:', rce_max)

    print('Checking time path for violations of constraints.')
    for t in range(p.T):
        household.constraint_checker_TPI(b_mat[t], n_mat[t], c_mat[t], t,
                                         p.ltilde)

    eul_savings = euler_errors[:, :p.S, :].max(1).max(1)
    eul_laborleisure = euler_errors[:, p.S:, :].max(1).max(1)

    print('Max Euler error, savings: ', eul_savings)
    print('Max Euler error labor supply: ', eul_laborleisure)
    '''
    ------------------------------------------------------------------------
    Save variables/values so they can be used in other modules
    ------------------------------------------------------------------------
    '''

    output = {
        'Y': Y[:p.T],
        'B': B,
        'K': K,
        'K_f': K_f,
        'K_d': K_d,
        'L': L,
        'C': C,
        'I': I,
        'I_total': I_total,
        'I_d': I_d,
        'BQ': BQ,
        'total_revenue': total_revenue,
        'business_revenue': business_revenue,
        'IITpayroll_revenue': T_Ipath,
        'T_H': T_H,
        'T_P': T_Ppath,
        'T_BQ': T_BQpath,
        'T_W': T_Wpath,
        'T_C': T_Cpath,
        'G': G,
        'D': D,
        'D_f': D_f,
        'D_d': D_d,
        'r': r,
        'r_gov': r_gov,
        'r_hh': r_hh,
        'w': w,
        'bmat_splus1': bmat_splus1,
        'bmat_s': bmat_s[:p.T, :, :],
        'n_mat': n_mat[:p.T, :, :],
        'c_path': c_mat,
        'bq_path': bqmat,
        'y_before_tax_mat': y_before_tax_mat,
        'tax_path': tax_mat,
        'eul_savings': eul_savings,
        'eul_laborleisure': eul_laborleisure,
        'resource_constraint_error': RC_error,
        'new_borrowing_f': new_borrowing_f,
        'debt_service_f': debt_service_f,
        'etr_path': etr_path,
        'mtrx_path': mtrx_path,
        'mtry_path': mtry_path
    }

    tpi_dir = os.path.join(p.output_base, "TPI")
    utils.mkdirs(tpi_dir)
    tpi_vars = os.path.join(tpi_dir, "TPI_vars.pkl")
    pickle.dump(output, open(tpi_vars, "wb"))

    if np.any(G) < 0:
        print('Government spending is negative along transition path' +
              ' to satisfy budget')

    if (((TPIiter >= p.maxiter) or (np.absolute(TPIdist) > p.mindist_TPI))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found' +
                           ' (TPIdist)')

    if ((np.any(np.absolute(RC_error) >= p.mindist_TPI * 10))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found ' +
                           '(RC_error)')

    if ((np.any(np.absolute(eul_savings) >= p.mindist_TPI) or
         (np.any(np.absolute(eul_laborleisure) > p.mindist_TPI)))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found ' +
                           '(eulers)')

    return output
Example #21
0
def runner_SS(output_base,
              baseline_dir,
              baseline=False,
              analytical_mtrs=True,
              age_specific=False,
              reform={},
              user_params={},
              guid='',
              run_micro=True):

    from ogusa import parameters, demographics, income, utils
    from ogusa import txfunc

    tick = time.time()

    #Create output directory structure
    saved_moments_dir = os.path.join(output_base, "Saved_moments")
    ss_dir = os.path.join(output_base, "SS")
    tpi_dir = os.path.join(output_base, "TPI")
    dirs = [saved_moments_dir, ss_dir, tpi_dir]
    for _dir in dirs:
        try:
            print "making dir: ", _dir
            os.makedirs(_dir)
        except OSError as oe:
            pass

    if run_micro:
        txfunc.get_tax_func_estimate(baseline=baseline,
                                     analytical_mtrs=analytical_mtrs,
                                     age_specific=age_specific,
                                     start_year=user_params['start_year'],
                                     reform=reform,
                                     guid=guid)
    print("in runner, baseline is ", baseline)
    run_params = ogusa.parameters.get_parameters(baseline=baseline, guid=guid)
    run_params['analytical_mtrs'] = analytical_mtrs

    # Modify ogusa parameters based on user input
    if 'frisch' in user_params:
        print "updating fricsh and associated"
        b_ellipse, upsilon = ogusa.elliptical_u_est.estimation(
            user_params['frisch'], run_params['ltilde'])
        run_params['b_ellipse'] = b_ellipse
        run_params['upsilon'] = upsilon
        run_params.update(user_params)

    # Modify ogusa parameters based on user input
    if 'g_y_annual' in user_params:
        print "updating g_y_annual and associated"
        g_y = (1 + user_params['g_y_annual'])**(
            float(ending_age - starting_age) / S) - 1
        run_params['g_y'] = g_y
        run_params.update(user_params)

    from ogusa import SS, TPI
    '''
    ****
    CALL CALIBRATION here if boolean flagged

    ****
    '''
    calibrate_model = False
    # if calibrate_model:
    #     chi_b, chi_n = calibrate.(income_tax_params, ss_params, iterative_params, chi_params, baseline,
    #                                  calibrate_model, output_dir=output_base, baseline_dir=baseline_dir)

    # List of parameter names that will not be changing (unless we decide to
    # change them for a tax experiment)

    param_names = [
        'S', 'J', 'T', 'BW', 'lambdas', 'starting_age', 'ending_age', 'beta',
        'sigma', 'alpha', 'nu', 'Z', 'delta', 'E', 'ltilde', 'g_y', 'maxiter',
        'mindist_SS', 'mindist_TPI', 'analytical_mtrs', 'b_ellipse',
        'k_ellipse', 'upsilon', 'chi_b_guess', 'chi_n_guess', 'etr_params',
        'mtrx_params', 'mtry_params', 'tau_payroll', 'tau_bq', 'retire',
        'mean_income_data', 'g_n_vector', 'h_wealth', 'p_wealth', 'm_wealth',
        'omega', 'g_n_ss', 'omega_SS', 'surv_rate', 'e', 'rho'
    ]
    '''
    ------------------------------------------------------------------------
        Run SS 
    ------------------------------------------------------------------------
    '''

    sim_params = {}
    for key in param_names:
        sim_params[key] = run_params[key]

    sim_params['output_dir'] = output_base
    sim_params['run_params'] = run_params

    income_tax_params, ss_params, iterative_params, chi_params = SS.create_steady_state_parameters(
        **sim_params)

    ss_outputs = SS.run_SS(income_tax_params,
                           ss_params,
                           iterative_params,
                           chi_params,
                           baseline,
                           baseline_dir=baseline_dir)
    '''
    ------------------------------------------------------------------------
        Pickle SS results 
    ------------------------------------------------------------------------
    '''
    if baseline:
        utils.mkdirs(os.path.join(baseline_dir, "SS"))
        ss_dir = os.path.join(baseline_dir, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
    else:
        utils.mkdirs(os.path.join(output_base, "SS"))
        ss_dir = os.path.join(output_base, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
Example #22
0
def runner(output_base,
           baseline_dir,
           test=False,
           time_path=True,
           baseline=True,
           reform={},
           user_params={},
           guid='',
           run_micro=True,
           data=None,
           client=None,
           num_workers=1):

    tick = time.time()
    # Create output directory structure
    ss_dir = os.path.join(output_base, "SS")
    tpi_dir = os.path.join(output_base, "TPI")
    dirs = [ss_dir, tpi_dir]
    for _dir in dirs:
        try:
            print("making dir: ", _dir)
            os.makedirs(_dir)
        except OSError:
            pass

    print('In runner, baseline is ', baseline)

    # Get parameter class
    # Note - set run_micro false when initially load class
    # Update later with call to spec.get_tax_function_parameters()
    spec = Specifications(run_micro=False,
                          output_base=output_base,
                          baseline_dir=baseline_dir,
                          test=test,
                          time_path=time_path,
                          baseline=baseline,
                          reform=reform,
                          guid=guid,
                          data=data,
                          client=client,
                          num_workers=num_workers)

    spec.update_specifications(user_params)
    print('path for tax functions: ', spec.output_base)
    spec.get_tax_function_parameters(client, run_micro)
    '''
    ------------------------------------------------------------------------
        Run SS
    ------------------------------------------------------------------------
    '''
    ss_outputs = SS.run_SS(spec, client=client)
    '''
    ------------------------------------------------------------------------
        Pickle SS results
    ------------------------------------------------------------------------
    '''
    if baseline:
        utils.mkdirs(os.path.join(baseline_dir, "SS"))
        ss_dir = os.path.join(baseline_dir, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
        # Save pickle with parameter values for the run
        param_dir = os.path.join(baseline_dir, "model_params.pkl")
        pickle.dump(spec, open(param_dir, "wb"))
    else:
        utils.mkdirs(os.path.join(output_base, "SS"))
        ss_dir = os.path.join(output_base, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
        # Save pickle with parameter values for the run
        param_dir = os.path.join(output_base, "model_params.pkl")
        pickle.dump(spec, open(param_dir, "wb"))

    if time_path:
        '''
        ------------------------------------------------------------------------
            Run the TPI simulation
        ------------------------------------------------------------------------
        '''
        tpi_output = TPI.run_TPI(spec, client=client)
        '''
        ------------------------------------------------------------------------
            Pickle TPI results
        ------------------------------------------------------------------------
        '''
        tpi_dir = os.path.join(output_base, "TPI")
        utils.mkdirs(tpi_dir)
        tpi_vars = os.path.join(tpi_dir, "TPI_vars.pkl")
        pickle.dump(tpi_output, open(tpi_vars, "wb"))

        print("Time path iteration complete.")
    print("It took {0} seconds to get that part done.".format(time.time() -
                                                              tick))
Example #23
0
def runner(output_base, baseline_dir, test=False, time_path=True,
           baseline=True, reform={}, user_params={}, guid='',
           run_micro=True, data=None, client=None, num_workers=1):

    tick = time.time()
    # Create output directory structure
    ss_dir = os.path.join(output_base, "SS")
    tpi_dir = os.path.join(output_base, "TPI")
    dirs = [ss_dir, tpi_dir]
    for _dir in dirs:
        try:
            print("making dir: ", _dir)
            os.makedirs(_dir)
        except OSError:
            pass

    print('In runner, baseline is ', baseline)

    # Get parameter class
    # Note - set run_micro false when initially load class
    # Update later with call to spec.get_tax_function_parameters()
    spec = Specifications(run_micro=False, output_base=output_base,
                          baseline_dir=baseline_dir, test=test,
                          time_path=time_path, baseline=baseline,
                          reform=reform, guid=guid, data=data,
                          client=client, num_workers=num_workers)

    spec.update_specifications(user_params)
    print('path for tax functions: ', spec.output_base)
    spec.get_tax_function_parameters(client, run_micro)

    '''
    ------------------------------------------------------------------------
        Run SS
    ------------------------------------------------------------------------
    '''
    ss_outputs = SS.run_SS(spec, client=client)

    '''
    ------------------------------------------------------------------------
        Pickle SS results
    ------------------------------------------------------------------------
    '''
    if baseline:
        utils.mkdirs(os.path.join(baseline_dir, "SS"))
        ss_dir = os.path.join(baseline_dir, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
        # Save pickle with parameter values for the run
        param_dir = os.path.join(baseline_dir, "model_params.pkl")
        pickle.dump(spec, open(param_dir, "wb"))
    else:
        utils.mkdirs(os.path.join(output_base, "SS"))
        ss_dir = os.path.join(output_base, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
        # Save pickle with parameter values for the run
        param_dir = os.path.join(output_base, "model_params.pkl")
        pickle.dump(spec, open(param_dir, "wb"))

    if time_path:
        '''
        ------------------------------------------------------------------------
            Run the TPI simulation
        ------------------------------------------------------------------------
        '''
        tpi_output = TPI.run_TPI(spec, client=client)

        '''
        ------------------------------------------------------------------------
            Pickle TPI results
        ------------------------------------------------------------------------
        '''
        tpi_dir = os.path.join(output_base, "TPI")
        utils.mkdirs(tpi_dir)
        tpi_vars = os.path.join(tpi_dir, "TPI_vars.pkl")
        pickle.dump(tpi_output, open(tpi_vars, "wb"))

        print("Time path iteration complete.")
    print("It took {0} seconds to get that part done.".format(
        time.time() - tick))
Example #24
0
    def get_tax_function_parameters(
        self,
        p,
        iit_reform={},
        guid="",
        data="",
        client=None,
        num_workers=1,
        run_micro=False,
        tax_func_path=None,
    ):
        """
        Reads pickle file of tax function parameters or estimates the
        parameters from microsimulation model output.
        Args:
            client (Dask client object): client
            run_micro (bool): whether to estimate parameters from
                microsimulation model
            tax_func_path (string): path where find or save tax
                function parameter estimates
        Returns:
            None
        """
        # set paths if none given
        if tax_func_path is None:
            if p.baseline:
                pckl = "TxFuncEst_baseline{}.pkl".format(guid)
                tax_func_path = os.path.join(CUR_PATH, pckl)
                print("Using baseline tax parameters from ", tax_func_path)
            else:
                pckl = "TxFuncEst_policy{}.pkl".format(guid)
                tax_func_path = os.path.join(CUR_PATH, pckl)
                print(
                    "Using reform policy tax parameters from ", tax_func_path
                )
        # create directory for tax function pickles to be saved to
        mkdirs(os.path.split(tax_func_path)[0])
        # If run_micro is false, check to see if parameters file exists
        # and if it is consistent with Specifications instance
        if not run_micro:
            dict_params, run_micro = self.read_tax_func_estimate(tax_func_path)
        if run_micro:
            txfunc.get_tax_func_estimate(  # pragma: no cover
                p.BW,
                p.S,
                p.starting_age,
                p.ending_age,
                p.baseline,
                p.analytical_mtrs,
                p.tax_func_type,
                p.age_specific,
                p.start_year,
                iit_reform,
                guid,
                tax_func_path,
                data,
                client,
                num_workers,
            )
            dict_params, _ = self.read_tax_func_estimate(p, tax_func_path)
        mean_income_data = dict_params["tfunc_avginc"][0]
        try:
            frac_tax_payroll = np.append(
                dict_params["tfunc_frac_tax_payroll"],
                np.ones(p.T + p.S - p.BW)
                * dict_params["tfunc_frac_tax_payroll"][-1],
            )
        except KeyError:
            pass
        try:
            taxcalc_version = dict_params["taxcalc_version"]
        except KeyError:
            taxcalc_version = "No version recorded"

        # Reorder indices of tax function and tile for all years after
        # budget window ends
        num_etr_params = dict_params["tfunc_etr_params_S"].shape[2]
        # First check to see if tax parameters that are used were
        # estimated with a budget window and ages that are as long as
        # the those implied based on the start year and model age.
        # N.B. the tax parameters dictionary does not save the years
        # that correspond to the parameter estimates, so the start year
        # used there may name match what is used in a run that reads in
        # some cached tax function parameters.  Likewise for age.
        params_list = ["etr", "mtrx", "mtry"]
        BW_in_tax_params = dict_params["tfunc_etr_params_S"].shape[1]
        S_in_tax_params = dict_params["tfunc_etr_params_S"].shape[0]
        if p.BW != BW_in_tax_params:
            print(
                "Warning: There is a discrepency between the start"
                + " year of the model and that of the tax functions!!"
            )
        # After printing warning, make it work by tiling
        if p.BW > BW_in_tax_params:
            for item in params_list:
                dict_params["tfunc_" + item + "_params_S"] = np.concatenate(
                    (
                        dict_params["tfunc_" + item + "_params_S"],
                        np.tile(
                            dict_params["tfunc_" + item + "_params_S"][
                                :, -1, :
                            ].reshape(S_in_tax_params, 1, num_etr_params),
                            (1, p.BW - BW_in_tax_params, 1),
                        ),
                    ),
                    axis=1,
                )
                dict_params["tfunc_avg_" + item] = np.append(
                    dict_params["tfunc_avg_" + item],
                    np.tile(
                        dict_params["tfunc_avg_" + item][-1],
                        (p.BW - BW_in_tax_params),
                    ),
                )
        if p.S != S_in_tax_params:
            print(
                "Warning: There is a discrepency between the ages"
                + " used in the model and those in the tax functions!!"
            )
        # After printing warning, make it work by tiling
        if p.S > S_in_tax_params:
            for item in params_list:
                dict_params["tfunc_" + item + "_params_S"] = np.concatenate(
                    (
                        dict_params["tfunc_" + item + "_params_S"],
                        np.tile(
                            dict_params["tfunc_" + item + "_params_S"][
                                -1, :, :
                            ].reshape(1, p.BW, num_etr_params),
                            (p.S - S_in_tax_params, 1, 1),
                        ),
                    ),
                    axis=0,
                )
        tax_param_dict = {
            "etr_params": dict_params["tfunc_etr_params_S"],
            "mtrx_params": dict_params["tfunc_mtrx_params_S"],
            "mtry_params": dict_params["tfunc_mtry_params_S"],
            "taxcalc_version": taxcalc_version,
            "mean_income_data": mean_income_data,
            "frac_tax_payroll": frac_tax_payroll,
        }

        return tax_param_dict
Example #25
0
def runner(output_base,
           baseline_dir,
           baseline=False,
           analytical_mtrs=True,
           age_specific=False,
           reform=0,
           fix_transfers=False,
           user_params={},
           guid='',
           run_micro=True,
           calibrate_model=False):

    from ogusa import parameters, demographics, income, utils

    tick = time.time()

    #Create output directory structure
    saved_moments_dir = os.path.join(output_base, "Saved_moments")
    ss_dir = os.path.join(output_base, "SS")
    tpi_dir = os.path.join(output_base, "TPI")
    dirs = [saved_moments_dir, ss_dir, tpi_dir]
    for _dir in dirs:
        try:
            print "making dir: ", _dir
            os.makedirs(_dir)
        except OSError as oe:
            pass

    print("in runner, baseline is ", baseline)
    run_params = ogusa.parameters.get_parameters(baseline=baseline,
                                                 reform=reform,
                                                 guid=guid,
                                                 user_modifiable=True)
    run_params['analytical_mtrs'] = analytical_mtrs

    # Modify ogusa parameters based on user input
    if 'frisch' in user_params:
        print "updating fricsh and associated"
        b_ellipse, upsilon = ogusa.elliptical_u_est.estimation(
            user_params['frisch'], run_params['ltilde'])
        run_params['b_ellipse'] = b_ellipse
        run_params['upsilon'] = upsilon
        run_params.update(user_params)

    # Modify ogusa parameters based on user input
    if 'sigma' in user_params:
        print "updating sigma"
        run_params['sigma'] = user_params['sigma']
        run_params.update(user_params)

    from ogusa import SS, TPI

    calibrate_model = False
    # List of parameter names that will not be changing (unless we decide to
    # change them for a tax experiment)

    param_names = [
        'S', 'J', 'T', 'BW', 'lambdas', 'starting_age', 'ending_age', 'beta',
        'sigma', 'alpha', 'nu', 'Z', 'delta', 'E', 'ltilde', 'g_y', 'maxiter',
        'mindist_SS', 'mindist_TPI', 'analytical_mtrs', 'b_ellipse',
        'k_ellipse', 'upsilon', 'chi_b_guess', 'chi_n_guess', 'etr_params',
        'mtrx_params', 'mtry_params', 'tau_payroll', 'tau_bq', 'retire',
        'mean_income_data', 'g_n_vector', 'h_wealth', 'p_wealth', 'm_wealth',
        'omega', 'g_n_ss', 'omega_SS', 'surv_rate', 'imm_rates', 'e', 'rho',
        'omega_S_preTP'
    ]
    '''
    ------------------------------------------------------------------------
        If using income tax reform, need to determine parameters that yield
        same SS revenue as the wealth tax reform.
    ------------------------------------------------------------------------
    '''
    if reform == 1:
        sim_params = {}
        for key in param_names:
            sim_params[key] = run_params[key]

        sim_params['output_dir'] = output_base
        sim_params['run_params'] = run_params
        income_tax_params, ss_params, iterative_params, chi_params = SS.create_steady_state_parameters(
            **sim_params)

        # find SS revenue from wealth tax reform
        reform3_ss_dir = os.path.join(
            "./OUTPUT_WEALTH_REFORM" + '/sigma' + str(run_params['sigma']),
            "SS/SS_vars.pkl")
        reform3_ss_solutions = pickle.load(open(reform3_ss_dir, "rb"))
        receipts_to_match = reform3_ss_solutions['net_tax_receipts']

        # create function to match SS revenue
        # def matcher(d_guess, params):
        #     income_tax_params, receipts_to_match, ss_params, iterative_params,\
        #                       chi_params, baseline, baseline_dir = params
        #     analytical_mtrs, etr_params, mtrx_params, mtry_params = income_tax_params
        #     etr_params[:,3] = d_guess
        #     mtrx_params[:,3] = d_guess
        #     mtry_params[:,3] = d_guess
        #     income_tax_params = analytical_mtrs, etr_params, mtrx_params, mtry_params
        #     ss_outputs = SS.run_SS(income_tax_params, ss_params, iterative_params,
        #                       chi_params, baseline ,baseline_dir=baseline_dir, output_base=output_base)
        #
        #     receipts_new = ss_outputs['T_Hss'] + ss_outputs['Gss']
        #     error = abs(receipts_to_match - receipts_new)
        #     if d_guess <= 0:
        #         error = 1e14
        #     print 'Error in taxes:', error
        #     return error

        # print 'Computing new income tax to match wealth tax'
        d_guess = 0.413  # initial guess
        # import scipy.optimize as opt
        # params = [income_tax_params, receipts_to_match, ss_params, iterative_params,
        #                   chi_params, baseline, baseline_dir]
        # new_d_inc = opt.fsolve(matcher, d_guess, args=params, xtol=1e-6)
        new_d_inc = 0.413  # this value comes out given default parameter values (if fix_transfers=True this is 0.503 if False then 0.453)

        print '\tOld income tax:', d_guess
        print '\tNew income tax:', new_d_inc
        analytical_mtrs, etr_params, mtrx_params, mtry_params = income_tax_params

        etr_params[:, 3] = new_d_inc
        mtrx_params[:, 3] = new_d_inc
        mtry_params[:, 3] = new_d_inc

        run_params['etr_params'] = np.tile(
            np.reshape(etr_params, (run_params['S'], 1, etr_params.shape[1])),
            (1, run_params['BW'], 1))
        run_params['mtrx_params'] = np.tile(
            np.reshape(mtrx_params,
                       (run_params['S'], 1, mtrx_params.shape[1])),
            (1, run_params['BW'], 1))
        run_params['mtry_params'] = np.tile(
            np.reshape(mtry_params,
                       (run_params['S'], 1, mtry_params.shape[1])),
            (1, run_params['BW'], 1))
    '''
    ------------------------------------------------------------------------
        Run SS
    ------------------------------------------------------------------------
    '''

    sim_params = {}
    for key in param_names:
        sim_params[key] = run_params[key]

    sim_params['output_dir'] = output_base
    sim_params['run_params'] = run_params

    income_tax_params, ss_parameters, iterative_params, chi_params = SS.create_steady_state_parameters(
        **sim_params)

    analytical_mtrs, etr_params, mtrx_params, mtry_params = income_tax_params
    print('ETR param shape = ', etr_params.shape)

    ss_outputs = SS.run_SS(income_tax_params,
                           ss_parameters,
                           iterative_params,
                           chi_params,
                           baseline,
                           fix_transfers=fix_transfers,
                           baseline_dir=baseline_dir)
    '''
    ------------------------------------------------------------------------
        Pickle SS results and parameters of run
    ------------------------------------------------------------------------
    '''
    if baseline:
        utils.mkdirs(os.path.join(baseline_dir, "SS"))
        ss_dir = os.path.join(baseline_dir, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
        param_dir = os.path.join(baseline_dir, "run_parameters.pkl")
        pickle.dump(sim_params, open(param_dir, "wb"))
    else:
        utils.mkdirs(os.path.join(output_base, "SS"))
        ss_dir = os.path.join(output_base, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
        param_dir = os.path.join(output_base, "run_parameters.pkl")
        pickle.dump(sim_params, open(param_dir, "wb"))
    '''
    ------------------------------------------------------------------------
        Run the TPI simulation
    ------------------------------------------------------------------------
    '''

    sim_params['baseline'] = baseline
    sim_params['input_dir'] = output_base
    sim_params['baseline_dir'] = baseline_dir

    income_tax_params, tpi_params, iterative_params, initial_values, SS_values = TPI.create_tpi_params(
        **sim_params)

    tpi_output, macro_output = TPI.run_TPI(income_tax_params,
                                           tpi_params,
                                           iterative_params,
                                           initial_values,
                                           SS_values,
                                           fix_transfers=fix_transfers,
                                           output_dir=output_base)
    '''
    ------------------------------------------------------------------------
        Pickle TPI results
    ------------------------------------------------------------------------
    '''
    tpi_dir = os.path.join(output_base, "TPI")
    utils.mkdirs(tpi_dir)
    tpi_vars = os.path.join(tpi_dir, "TPI_vars.pkl")
    pickle.dump(tpi_output, open(tpi_vars, "wb"))

    tpi_dir = os.path.join(output_base, "TPI")
    utils.mkdirs(tpi_dir)
    tpi_vars = os.path.join(tpi_dir, "TPI_macro_vars.pkl")
    pickle.dump(macro_output, open(tpi_vars, "wb"))

    print "Time path iteration complete.  It"
    print "took {0} seconds to get that part done.".format(time.time() - tick)
Example #26
0
def runner(output_base,
           baseline_dir,
           test=False,
           time_path=True,
           baseline=False,
           analytical_mtrs=False,
           age_specific=False,
           reform={},
           user_params={},
           guid='',
           run_micro=True,
           small_open=False,
           budget_balance=False,
           baseline_spending=False):

    #from ogusa import parameters, wealth, labor, demographics, income
    from ogusa import parameters, demographics, income, utils
    from ogusa import txfunc

    tick = time.time()

    # Make sure options are internally consistent
    if baseline == True and baseline_spending == True:
        print(
            'Inconsistent options. Setting <baseline_spending> to False, leaving <baseline> True.'
        )
        baseline_spending = False
    if budget_balance == True and baseline_spending == True:
        print(
            'Inconsistent options. Setting <baseline_spending> to False, leaving <budget_balance> True.'
        )
        baseline_spending = False

    #Create output directory structure
    saved_moments_dir = os.path.join(output_base, "Saved_moments")
    ss_dir = os.path.join(output_base, "SS")
    tpi_dir = os.path.join(output_base, "TPI")
    dirs = [saved_moments_dir, ss_dir, tpi_dir]
    for _dir in dirs:
        try:
            print("making dir: ", _dir)
            os.makedirs(_dir)
        except OSError as oe:
            pass

    if run_micro:
        txfunc.get_tax_func_estimate(baseline=baseline,
                                     analytical_mtrs=analytical_mtrs,
                                     age_specific=age_specific,
                                     start_year=user_params['start_year'],
                                     reform=reform,
                                     guid=guid)
    print('In runner, baseline is ', baseline)
    run_params = ogusa.parameters.get_parameters(test=test,
                                                 baseline=baseline,
                                                 guid=guid)
    run_params['analytical_mtrs'] = analytical_mtrs
    run_params['small_open'] = small_open
    run_params['budget_balance'] = budget_balance

    # Modify ogusa parameters based on user input
    if 'frisch' in user_params:
        print("updating frisch and associated")
        b_ellipse, upsilon = ogusa.elliptical_u_est.estimation(
            user_params['frisch'], run_params['ltilde'])
        run_params['b_ellipse'] = b_ellipse
        run_params['upsilon'] = upsilon
        run_params.update(user_params)
    if 'debt_ratio_ss' in user_params:
        run_params['debt_ratio_ss'] = user_params['debt_ratio_ss']

    # Modify ogusa parameters based on user input
    if 'g_y_annual' in user_params:
        print("updating g_y_annual and associated")
        ending_age = run_params['ending_age']
        starting_age = run_params['starting_age']
        S = run_params['S']
        g_y = (1 + user_params['g_y_annual'])**(
            float(ending_age - starting_age) / S) - 1
        run_params['g_y'] = g_y
        run_params.update(user_params)

    # Modify transfer & spending ratios based on user input.
    if 'T_shifts' in user_params:
        if baseline_spending == False:
            print('updating ALPHA_T with T_shifts in first',
                  user_params['T_shifts'].size, 'periods.')
            T_shifts = np.concatenate((user_params['T_shifts'],
                                       np.zeros(run_params['ALPHA_T'].size -
                                                user_params['T_shifts'].size)),
                                      axis=0)
            run_params['ALPHA_T'] = run_params['ALPHA_T'] + T_shifts
    if 'G_shifts' in user_params:
        if baseline_spending == False:
            print('updating ALPHA_G with G_shifts in first',
                  user_params['G_shifts'].size, 'periods.')
            G_shifts = np.concatenate((user_params['G_shifts'],
                                       np.zeros(run_params['ALPHA_G'].size -
                                                user_params['G_shifts'].size)),
                                      axis=0)
            run_params['ALPHA_G'] = run_params['ALPHA_G'] + G_shifts

    from ogusa import SS, TPI

    calibrate_model = False
    # List of parameter names that will not be changing (unless we decide to
    # change them for a tax experiment)

    param_names = [
        'S', 'J', 'T', 'BW', 'lambdas', 'starting_age', 'ending_age', 'beta',
        'sigma', 'alpha', 'gamma', 'epsilon', 'nu', 'Z', 'delta', 'E',
        'ltilde', 'g_y', 'maxiter', 'mindist_SS', 'mindist_TPI',
        'analytical_mtrs', 'b_ellipse', 'k_ellipse', 'upsilon', 'small_open',
        'budget_balance', 'ss_firm_r', 'ss_hh_r', 'tpi_firm_r', 'tpi_hh_r',
        'tG1', 'tG2', 'alpha_T', 'alpha_G', 'ALPHA_T', 'ALPHA_G', 'rho_G',
        'debt_ratio_ss', 'tau_b', 'delta_tau', 'chi_b_guess', 'chi_n_guess',
        'etr_params', 'mtrx_params', 'mtry_params', 'tau_payroll', 'tau_bq',
        'retire', 'mean_income_data', 'g_n_vector', 'h_wealth', 'p_wealth',
        'm_wealth', 'omega', 'g_n_ss', 'omega_SS', 'surv_rate', 'imm_rates',
        'e', 'rho', 'initial_debt', 'omega_S_preTP'
    ]
    '''
    ------------------------------------------------------------------------
        Run SS
    ------------------------------------------------------------------------
    '''

    sim_params = {}
    for key in param_names:
        sim_params[key] = run_params[key]

    sim_params['output_dir'] = output_base
    sim_params['run_params'] = run_params
    income_tax_params, ss_parameters, iterative_params, chi_params, small_open_params = SS.create_steady_state_parameters(
        **sim_params)

    ss_outputs = SS.run_SS(income_tax_params,
                           ss_parameters,
                           iterative_params,
                           chi_params,
                           small_open_params,
                           baseline,
                           baseline_spending,
                           baseline_dir=baseline_dir)
    '''
    ------------------------------------------------------------------------
        Pickle SS results
    ------------------------------------------------------------------------
    '''
    if baseline:
        utils.mkdirs(os.path.join(baseline_dir, "SS"))
        ss_dir = os.path.join(baseline_dir, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
    else:
        utils.mkdirs(os.path.join(output_base, "SS"))
        ss_dir = os.path.join(output_base, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))

    if time_path:
        '''
        ------------------------------------------------------------------------
            Run the TPI simulation
        ------------------------------------------------------------------------
        '''

        sim_params['baseline'] = baseline
        sim_params['baseline_spending'] = baseline_spending
        sim_params['input_dir'] = output_base
        sim_params['baseline_dir'] = baseline_dir

        income_tax_params, tpi_params, iterative_params, small_open_params, initial_values, SS_values, fiscal_params, biz_tax_params = TPI.create_tpi_params(
            **sim_params)

        tpi_output, macro_output = TPI.run_TPI(
            income_tax_params,
            tpi_params,
            iterative_params,
            small_open_params,
            initial_values,
            SS_values,
            fiscal_params,
            biz_tax_params,
            output_dir=output_base,
            baseline_spending=baseline_spending)
        '''
        ------------------------------------------------------------------------
            Pickle TPI results
        ------------------------------------------------------------------------
        '''
        tpi_dir = os.path.join(output_base, "TPI")
        utils.mkdirs(tpi_dir)
        tpi_vars = os.path.join(tpi_dir, "TPI_vars.pkl")
        pickle.dump(tpi_output, open(tpi_vars, "wb"))

        tpi_dir = os.path.join(output_base, "TPI")
        utils.mkdirs(tpi_dir)
        tpi_vars = os.path.join(tpi_dir, "TPI_macro_vars.pkl")
        pickle.dump(macro_output, open(tpi_vars, "wb"))

        print("Time path iteration complete.")
    print("It took {0} seconds to get that part done.".format(time.time() -
                                                              tick))
Example #27
0
def run_model(meta_param_dict, adjustment):
    '''
    Initializes classes from OG-USA that compute the model under
    different policies.  Then calls function get output objects.
    '''
    print('Meta_param_dict = ', meta_param_dict)
    print('adjustment dict = ', adjustment)

    meta_params = MetaParams()
    meta_params.adjust(meta_param_dict)
    if meta_params.data_source == "PUF":
        data = retrieve_puf(AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY)
        # set name of cached baseline file in case use below
        cached_pickle = 'TxFuncEst_baseline_PUF.pkl'
    else:
        data = "cps"
        # set name of cached baseline file in case use below
        cached_pickle = 'TxFuncEst_baseline_CPS.pkl'
    # Get TC params adjustments
    iit_mods = convert_policy_adjustment(
        adjustment["Tax-Calculator Parameters"])
    # Create output directory structure
    base_dir = os.path.join(CUR_DIR, BASELINE_DIR)
    reform_dir = os.path.join(CUR_DIR, REFORM_DIR)
    dirs = [base_dir, reform_dir]
    for _dir in dirs:
        utils.mkdirs(_dir)

    # Dask parmeters
    client = Client()
    num_workers = 5
    # TODO: Swap to these parameters when able to specify tax function
    # and model workers separately
    # num_workers_txf = 5
    # num_workers_mod = 6

    # whether to estimate tax functions from microdata
    run_micro = True
    time_path = meta_param_dict['time_path'][0]['value']

    # filter out OG-USA params that will not change between baseline and
    # reform runs (these are the non-policy parameters)
    filtered_ogusa_params = {}
    constant_param_set = {
        'frisch', 'beta_annual', 'sigma', 'g_y_annual', 'gamma', 'epsilon',
        'Z', 'delta_annual', 'small_open', 'world_int_rate',
        'initial_foreign_debt_ratio', 'zeta_D', 'zeta_K', 'tG1', 'tG2',
        'rho_G', 'debt_ratio_ss', 'budget_balance'
    }
    filtered_ogusa_params = OrderedDict()
    for k, v in adjustment['OG-USA Parameters'].items():
        if k in constant_param_set:
            filtered_ogusa_params[k] = v

    # Solve baseline model
    start_year = meta_param_dict['year'][0]['value']
    if start_year == 2020:
        OGPATH = inspect.getfile(SS)
        OGDIR = os.path.dirname(OGPATH)
        tax_func_path = None  #os.path.join(OGDIR, 'data', 'tax_functions',
        #             cached_pickle)
        run_micro_baseline = False
    else:
        tax_func_path = None
        run_micro_baseline = True
    base_spec = {
        **{
            'start_year': start_year,
            'tax_func_type': 'DEP',
            'age_specific': False
        },
        **filtered_ogusa_params
    }
    base_params = Specifications(run_micro=False,
                                 output_base=base_dir,
                                 baseline_dir=base_dir,
                                 test=False,
                                 time_path=False,
                                 baseline=True,
                                 iit_reform={},
                                 guid='',
                                 data=data,
                                 client=client,
                                 num_workers=num_workers)
    base_params.update_specifications(base_spec)
    base_params.get_tax_function_parameters(client,
                                            run_micro_baseline,
                                            tax_func_path=tax_func_path)
    base_ss = SS.run_SS(base_params, client=client)
    utils.mkdirs(os.path.join(base_dir, "SS"))
    base_ss_dir = os.path.join(base_dir, "SS", "SS_vars.pkl")
    with open(base_ss_dir, "wb") as f:
        pickle.dump(base_ss, f)
    if time_path:
        base_tpi = TPI.run_TPI(base_params, client=client)
        tpi_dir = os.path.join(base_dir, "TPI", "TPI_vars.pkl")
        with open(tpi_dir, "wb") as f:
            pickle.dump(base_tpi, f)
    else:
        base_tpi = None

    # Solve reform model
    reform_spec = base_spec
    reform_spec.update(adjustment["OG-USA Parameters"])
    reform_params = Specifications(run_micro=False,
                                   output_base=reform_dir,
                                   baseline_dir=base_dir,
                                   test=False,
                                   time_path=time_path,
                                   baseline=False,
                                   iit_reform=iit_mods,
                                   guid='',
                                   data=data,
                                   client=client,
                                   num_workers=num_workers)
    reform_params.update_specifications(reform_spec)
    reform_params.get_tax_function_parameters(client, run_micro)
    reform_ss = SS.run_SS(reform_params, client=client)
    utils.mkdirs(os.path.join(reform_dir, "SS"))
    reform_ss_dir = os.path.join(reform_dir, "SS", "SS_vars.pkl")
    with open(reform_ss_dir, "wb") as f:
        pickle.dump(reform_ss, f)
    if time_path:
        reform_tpi = TPI.run_TPI(reform_params, client=client)
    else:
        reform_tpi = None

    comp_dict = comp_output(base_params, base_ss, reform_params, reform_ss,
                            time_path, base_tpi, reform_tpi)

    # Shut down client and make sure all of its references are
    # cleaned up.
    client.close()
    del client

    return comp_dict
Example #28
0
def plot_all(base_output_path, reform_output_path, save_path):
    '''
    Function to plot all default output plots.

    Args:
        base_output_path (str): path to baseline results
        reform_output_path (str): path to reform results
        save_path (str): path to save plots to

    Returns:
        None: All output figures saved to disk.

    '''
    # Make directory in case it doesn't exist
    utils.mkdirs(save_path)
    # Read in data
    # Read in TPI output and parameters
    base_tpi = utils.safe_read_pickle(
        os.path.join(base_output_path, 'TPI', 'TPI_vars.pkl')
    )
    base_ss = utils.safe_read_pickle(
        os.path.join(base_output_path, 'SS', 'SS_vars.pkl')
    )

    base_params = utils.safe_read_pickle(
        os.path.join(base_output_path, 'model_params.pkl')
    )

    reform_tpi = utils.safe_read_pickle(
        os.path.join(reform_output_path, 'TPI', 'TPI_vars.pkl')
    )

    reform_ss = utils.safe_read_pickle(
        os.path.join(reform_output_path, 'SS', 'SS_vars.pkl')
    )

    reform_params = utils.safe_read_pickle(
        os.path.join(reform_output_path, 'model_params.pkl')
    )

    # Percentage changes in macro vars (Y, K, L, C)
    plot_aggregates(base_tpi, base_params, reform_tpi=reform_tpi,
                    reform_params=reform_params,
                    var_list=['Y', 'K', 'L', 'C'], plot_type='pct_diff',
                    num_years_to_plot=150,
                    start_year=base_params.start_year,
                    vertical_line_years=[
                        base_params.start_year + base_params.tG1,
                        base_params.start_year + base_params.tG2],
                    plot_title='Percentage Changes in Macro Aggregates',
                    path=os.path.join(save_path, 'MacroAgg_PctChange.png'))

    # Percentage change in fiscal vars (D, G, TR, Rev)
    plot_aggregates(base_tpi, base_params, reform_tpi=reform_tpi,
                    reform_params=reform_params,
                    var_list=['D', 'G', 'TR', 'total_tax_revenue'],
                    plot_type='pct_diff', num_years_to_plot=150,
                    start_year=base_params.start_year,
                    vertical_line_years=[
                        base_params.start_year + base_params.tG1,
                        base_params.start_year + base_params.tG2],
                    plot_title='Percentage Changes in Fiscal Variables',
                    path=os.path.join(save_path, 'Fiscal_PctChange.png'))

    # r and w in baseline and reform -- vertical lines at tG1, tG2
    plot_aggregates(base_tpi, base_params, reform_tpi=reform_tpi,
                    reform_params=reform_params,
                    var_list=['r'],
                    plot_type='levels', num_years_to_plot=150,
                    start_year=base_params.start_year,
                    vertical_line_years=[
                        base_params.start_year + base_params.tG1,
                        base_params.start_year + base_params.tG2],
                    plot_title='Real Interest Rates Under Baseline and Reform',
                    path=os.path.join(save_path, 'InterestRates.png'))

    plot_aggregates(base_tpi, base_params, reform_tpi=reform_tpi,
                    reform_params=reform_params,
                    var_list=['w'],
                    plot_type='levels', num_years_to_plot=150,
                    start_year=base_params.start_year,
                    vertical_line_years=[
                        base_params.start_year + base_params.tG1,
                        base_params.start_year + base_params.tG2],
                    plot_title='Wage Rates Under Baseline and Reform',
                    path=os.path.join(save_path, 'WageRates.png'))

    # Debt-GDP in base and reform-- vertical lines at tG1, tG2
    plot_gdp_ratio(base_tpi, base_params, reform_tpi, reform_params,
                   var_list=['D'], num_years_to_plot=150,
                   start_year=base_params.start_year,
                   vertical_line_years=[
                           base_params.start_year + base_params.tG1,
                           base_params.start_year + base_params.tG2],
                   plot_title='Debt-to-GDP',
                   path=os.path.join(save_path, 'DebtGDPratio.png'))

    # Tax revenue to GDP in base and reform-- vertical lines at tG1, tG2
    plot_gdp_ratio(base_tpi, base_params, reform_tpi, reform_params,
                   var_list=['total_tax_revenue'], num_years_to_plot=150,
                   start_year=base_params.start_year,
                   vertical_line_years=[
                           base_params.start_year + base_params.tG1,
                           base_params.start_year + base_params.tG2],
                   plot_title='Tax Revenue to GDP',
                   path=os.path.join(save_path, 'RevenueGDPratio.png'))

    # Pct change in c, n, b, y, etr, mtrx, mtry by ability group over 10 years
    var_list = ['c_path', 'n_mat', 'bmat_splus1', 'etr_path',
                'mtrx_path', 'mtry_path', 'y_before_tax_mat']
    title_list = ['consumption', 'labor supply', 'savings',
                  'effective tax rates',
                  'marginal tax rates on labor income',
                  'marginal tax rates on capital income',
                  'before tax income']
    path_list = ['Cons', 'Labor', 'Save', 'ETR', 'MTRx', 'MTRy',
                 'Income']
    for i, v in enumerate(var_list):
        ability_bar(base_tpi, base_params, reform_tpi, reform_params,
                    var=v, num_years=10,
                    start_year=base_params.start_year,
                    plot_title='Percentage changes in ' + title_list[i],
                    path=os.path.join(save_path, 'PctChange_' +
                                      path_list[i] + '.png'))

    # lifetime profiles, base vs reform, SS for c, n, b, y - not by j
    var_list = ['cssmat', 'nssmat', 'bssmat_splus1', 'etr_ss',
                'mtrx_ss', 'mtry_ss']
    for i, v in enumerate(var_list):
        ss_profiles(base_ss, base_params, reform_ss, reform_params,
                    by_j=False, var=v,
                    plot_title='Lifecycle Profile of ' + title_list[i],
                    path=os.path.join(save_path, 'SSLifecycleProfile_' +
                                      path_list[i] + '.png'))

    # lifetime profiles, c, n , b, y by j, separately for base and reform
    for i, v in enumerate(var_list):
        ss_profiles(base_ss, base_params,
                    by_j=True, var=v,
                    plot_title='Lifecycle Profile of ' + title_list[i],
                    path=os.path.join(save_path, 'SSLifecycleProfile_' +
                                      path_list[i] + '_Baseline.png'))
        ss_profiles(reform_ss, reform_params,
                    by_j=True, var=v,
                    plot_title='Lifecycle Profile of ' + title_list[i],
                    path=os.path.join(save_path, 'SSLifecycleProfile_' +
                                      path_list[i] + '_Reform.png'))
Example #29
0
def runner(output_base, baseline_dir, baseline=False, analytical_mtrs=True, age_specific=False, reform={}, user_params={}, guid='', run_micro=True):

    #from ogusa import parameters, wealth, labor, demographics, income
    from ogusa import parameters, wealth, labor, demog, income, utils
    from ogusa import txfunc

    tick = time.time()

    #Create output directory structure
    saved_moments_dir = os.path.join(output_base, "Saved_moments")
    ssinit_dir = os.path.join(output_base, "SSinit")
    tpiinit_dir = os.path.join(output_base, "TPIinit")
    dirs = [saved_moments_dir, ssinit_dir, tpiinit_dir]
    for _dir in dirs:
        try:
            print "making dir: ", _dir
            os.makedirs(_dir)
        except OSError as oe:
            pass

    if run_micro:
        txfunc.get_tax_func_estimate(baseline=baseline, analytical_mtrs=analytical_mtrs, age_specific=age_specific, 
                                     start_year=user_params['start_year'], reform=reform, guid=guid)
    print ("in runner, baseline is ", baseline)
    run_params = ogusa.parameters.get_parameters(baseline=baseline, guid=guid)
    run_params['analytical_mtrs'] = analytical_mtrs

    # Modify ogusa parameters based on user input
    if 'frisch' in user_params:
        print "updating fricsh and associated"
        b_ellipse, upsilon = ogusa.elliptical_u_est.estimation(user_params['frisch'],
                                                               run_params['ltilde'])
        run_params['b_ellipse'] = b_ellipse
        run_params['upsilon'] = upsilon
        run_params.update(user_params)

    # Modify ogusa parameters based on user input
    if 'g_y_annual' in user_params:
        print "updating g_y_annual and associated"
        g_y = (1 + user_params['g_y_annual'])**(float(ending_age - starting_age) / S) - 1
        run_params['g_y'] = g_y
        run_params.update(user_params)


    from ogusa import SS, TPI
    # Generate Wealth data moments
    wealth.get_wealth_data(run_params['lambdas'], run_params['J'], run_params['flag_graphs'], output_dir=output_base)

    # Generate labor data moments
    labor.labor_data_moments(run_params['flag_graphs'], output_dir=output_base)

    
    calibrate_model = False
    # List of parameter names that will not be changing (unless we decide to
    # change them for a tax experiment)

    param_names = ['S', 'J', 'T', 'BW', 'lambdas', 'starting_age', 'ending_age',
                'beta', 'sigma', 'alpha', 'nu', 'Z', 'delta', 'E',
                'ltilde', 'g_y', 'maxiter', 'mindist_SS', 'mindist_TPI',
                'analytical_mtrs', 'b_ellipse', 'k_ellipse', 'upsilon',
                'chi_b_guess', 'chi_n_guess','etr_params','mtrx_params',
                'mtry_params','tau_payroll', 'tau_bq',
                'retire', 'mean_income_data', 'g_n_vector',
                'h_wealth', 'p_wealth', 'm_wealth',
                'omega', 'g_n_ss', 'omega_SS', 'surv_rate', 'e', 'rho']


    '''
    ------------------------------------------------------------------------
        Run SS 
    ------------------------------------------------------------------------
    '''

    sim_params = {}
    for key in param_names:
        sim_params[key] = run_params[key]

    sim_params['output_dir'] = output_base
    sim_params['run_params'] = run_params

    income_tax_params, ss_parameters, iterative_params, chi_params = SS.create_steady_state_parameters(**sim_params)

    ss_outputs = SS.run_SS(income_tax_params, ss_parameters, iterative_params, chi_params, baseline, 
                                     baseline_dir=baseline_dir)

    '''
    ------------------------------------------------------------------------
        Pickle SS results 
    ------------------------------------------------------------------------
    '''
    if baseline:
        utils.mkdirs(os.path.join(baseline_dir, "SS"))
        ss_dir = os.path.join(baseline_dir, "SS/ss_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
    else:
        utils.mkdirs(os.path.join(output_dir, "SS"))
        ss_dir = os.path.join(output_dir, "SS/ss_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))


    '''
    ------------------------------------------------------------------------
        Run the baseline TPI simulation
    ------------------------------------------------------------------------
    '''

    sim_params['input_dir'] = output_base
    sim_params['baseline_dir'] = baseline_dir
    

    income_tax_params, tpi_params, iterative_params, initial_values, SS_values = TPI.create_tpi_params(**sim_params)

    # ss_outputs['income_tax_params'] = income_tax_params
    # ss_outputs['wealth_tax_params'] = wealth_tax_params
    # ss_outputs['ellipse_params'] = ellipse_params
    # ss_outputs['parameters'] = parameters
    # ss_outputs['N_tilde'] = N_tilde
    # ss_outputs['omega_stationary'] = omega_stationary
    # ss_outputs['K0'] = K0
    # ss_outputs['b_sinit'] = b_sinit
    # ss_outputs['b_splus1init'] = b_splus1init
    # ss_outputs['L0'] = L0
    # ss_outputs['Y0'] = Y0
    # ss_outputs['r0'] = r0
    # ss_outputs['BQ0'] = BQ0
    # ss_outputs['T_H_0'] = T_H_0
    # ss_outputs['factor_ss'] = factor
    # ss_outputs['tax0'] = tax0
    # ss_outputs['c0'] = c0
    # ss_outputs['initial_b'] = initial_b
    # ss_outputs['initial_n'] = initial_n
    # ss_outputs['tau_bq'] = tau_bq
    # ss_outputs['g_n_vector'] = g_n_vector
    # ss_outputs['output_dir'] = output_base


    # with open("ss_outputs.pkl", 'wb') as fp:
    #     pickle.dump(ss_outputs, fp)

    w_path, r_path, T_H_path, BQ_path, Y_path = TPI.run_TPI(income_tax_params, 
        tpi_params, iterative_params, initial_values, SS_values, output_dir=output_base)


    print "getting to here...."
    TPI.TP_solutions(w_path, r_path, T_H_path, BQ_path, **ss_outputs)
    print "took {0} seconds to get that part done.".format(time.time() - tick)
Example #30
0
def runner(output_base,
           baseline_dir,
           test=False,
           time_path=True,
           baseline=False,
           constant_rates=True,
           tax_func_type='DEP',
           analytical_mtrs=False,
           age_specific=False,
           reform={},
           user_params={},
           guid='',
           run_micro=True,
           small_open=False,
           budget_balance=False,
           baseline_spending=False,
           data=None,
           client=None,
           num_workers=1):

    from ogusa import parameters, demographics, income, utils

    tick = time.time()

    start_year = user_params.get('start_year', DEFAULT_START_YEAR)
    if start_year > TC_LAST_YEAR:
        raise RuntimeError("Start year is beyond data extrapolation.")

    # Make sure options are internally consistent
    if baseline and baseline_spending:
        print("Inconsistent options. Setting <baseline_spending> to False, "
              "leaving <baseline> True.'")
        baseline_spending = False
    if budget_balance and baseline_spending:
        print("Inconsistent options. Setting <baseline_spending> to False, "
              "leaving <budget_balance> True.")
        baseline_spending = False

    # Create output directory structure
    ss_dir = os.path.join(output_base, "SS")
    tpi_dir = os.path.join(output_base, "TPI")
    dirs = [ss_dir, tpi_dir]
    for _dir in dirs:
        try:
            print("making dir: ", _dir)
            os.makedirs(_dir)
        except OSError as oe:
            pass

    print('In runner, baseline is ', baseline)
    if small_open and (not isinstance(small_open, dict)):
        raise ValueError(
            'small_open must be False/None or a dict with keys: {}'.format(
                SMALL_OPEN_KEYS))
    small_open = small_open or {}
    run_params = ogusa.parameters.get_parameters(
        output_base,
        reform=reform,
        test=test,
        baseline=baseline,
        guid=guid,
        run_micro=run_micro,
        constant_rates=constant_rates,
        analytical_mtrs=analytical_mtrs,
        tax_func_type=tax_func_type,
        age_specific=age_specific,
        start_year=start_year,
        data=data,
        client=client,
        num_workers=num_workers,
        **small_open)
    run_params['analytical_mtrs'] = analytical_mtrs
    run_params['small_open'] = bool(small_open)
    run_params['budget_balance'] = budget_balance
    run_params['world_int_rate'] = small_open.get('world_int_rate',
                                                  DEFAULT_WORLD_INT_RATE)

    # Modify ogusa parameters based on user input
    if 'frisch' in user_params:
        print("updating frisch and associated")
        b_ellipse, upsilon = ogusa.elliptical_u_est.estimation(
            user_params['frisch'], run_params['ltilde'])
        run_params['b_ellipse'] = b_ellipse
        run_params['upsilon'] = upsilon
        run_params.update(user_params)
    if 'debt_ratio_ss' in user_params:
        run_params['debt_ratio_ss'] = user_params['debt_ratio_ss']
    if 'tau_b' in user_params:
        run_params['tau_b'] = user_params['tau_b']

    # Modify ogusa parameters based on user input
    if 'g_y_annual' in user_params:
        print("updating g_y_annual and associated")
        ending_age = run_params['ending_age']
        starting_age = run_params['starting_age']
        S = run_params['S']
        g_y = ((1 + user_params['g_y_annual'])
               **(float(ending_age - starting_age) / S) - 1)
        run_params['g_y'] = g_y
        run_params.update(user_params)

    # Modify transfer & spending ratios based on user input.
    if 'T_shifts' in user_params:
        if not baseline_spending:
            print('updating ALPHA_T with T_shifts in first',
                  user_params['T_shifts'].size, 'periods.')
            T_shifts = np.concatenate((user_params['T_shifts'],
                                       np.zeros(run_params['ALPHA_T'].size -
                                                user_params['T_shifts'].size)),
                                      axis=0)
            run_params['ALPHA_T'] = run_params['ALPHA_T'] + T_shifts
    if 'G_shifts' in user_params:
        if not baseline_spending:
            print('updating ALPHA_G with G_shifts in first',
                  user_params['G_shifts'].size, 'periods.')
            G_shifts = np.concatenate((user_params['G_shifts'],
                                       np.zeros(run_params['ALPHA_G'].size -
                                                user_params['G_shifts'].size)),
                                      axis=0)
            run_params['ALPHA_G'] = run_params['ALPHA_G'] + G_shifts

    from ogusa import SS, TPI

    calibrate_model = False
    # List of parameter names that will not be changing (unless we decide to
    # change them for a tax experiment)

    param_names = [
        'S', 'J', 'T', 'BW', 'lambdas', 'starting_age', 'ending_age', 'beta',
        'sigma', 'alpha', 'gamma', 'epsilon', 'nu', 'Z', 'delta', 'E',
        'ltilde', 'g_y', 'maxiter', 'mindist_SS', 'mindist_TPI',
        'analytical_mtrs', 'b_ellipse', 'k_ellipse', 'upsilon', 'small_open',
        'budget_balance', 'ss_firm_r', 'ss_hh_r', 'tpi_firm_r', 'tpi_hh_r',
        'tG1', 'tG2', 'alpha_T', 'alpha_G', 'ALPHA_T', 'ALPHA_G', 'rho_G',
        'debt_ratio_ss', 'tau_b', 'delta_tau', 'chi_b_guess', 'chi_n_guess',
        'etr_params', 'mtrx_params', 'mtry_params', 'tau_payroll', 'tau_bq',
        'retire', 'mean_income_data', 'g_n_vector', 'h_wealth', 'p_wealth',
        'm_wealth', 'omega', 'g_n_ss', 'omega_SS', 'surv_rate', 'imm_rates',
        'e', 'rho', 'initial_debt', 'omega_S_preTP'
    ]
    '''
    ------------------------------------------------------------------------
        Run SS
    ------------------------------------------------------------------------
    '''

    sim_params = {}
    for key in param_names:
        sim_params[key] = run_params[key]

    sim_params['output_dir'] = output_base
    sim_params['run_params'] = run_params
    sim_params['tax_func_type'] = tax_func_type
    (income_tax_params, ss_parameters, iterative_params, chi_params,
     small_open_params) = SS.create_steady_state_parameters(**sim_params)

    ss_outputs = SS.run_SS(income_tax_params,
                           ss_parameters,
                           iterative_params,
                           chi_params,
                           small_open_params,
                           baseline,
                           baseline_spending,
                           baseline_dir=baseline_dir,
                           client=client,
                           num_workers=num_workers)
    '''
    ------------------------------------------------------------------------
        Pickle SS results
    ------------------------------------------------------------------------
    '''
    model_params = {}
    for key in param_names:
        model_params[key] = sim_params[key]
    if baseline:
        utils.mkdirs(os.path.join(baseline_dir, "SS"))
        ss_dir = os.path.join(baseline_dir, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
        # Save pickle with parameter values for the run
        param_dir = os.path.join(baseline_dir, "model_params.pkl")
        pickle.dump(model_params, open(param_dir, "wb"))
    else:
        utils.mkdirs(os.path.join(output_base, "SS"))
        ss_dir = os.path.join(output_base, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
        # Save pickle with parameter values for the run
        param_dir = os.path.join(output_base, "model_params.pkl")
        pickle.dump(model_params, open(param_dir, "wb"))

    if time_path:
        '''
        ------------------------------------------------------------------------
            Run the TPI simulation
        ------------------------------------------------------------------------
        '''

        sim_params['baseline'] = baseline
        sim_params['baseline_spending'] = baseline_spending
        sim_params['input_dir'] = output_base
        sim_params['baseline_dir'] = baseline_dir

        (income_tax_params, tpi_params,
         iterative_params, small_open_params, initial_values, SS_values,
         fiscal_params, biz_tax_params) =\
            TPI.create_tpi_params(**sim_params)

        tpi_output = TPI.run_TPI(income_tax_params,
                                 tpi_params,
                                 iterative_params,
                                 small_open_params,
                                 initial_values,
                                 SS_values,
                                 fiscal_params,
                                 biz_tax_params,
                                 output_dir=output_base,
                                 baseline_spending=baseline_spending,
                                 client=client,
                                 num_workers=num_workers)
        '''
        ------------------------------------------------------------------------
            Pickle TPI results
        ------------------------------------------------------------------------
        '''
        tpi_dir = os.path.join(output_base, "TPI")
        utils.mkdirs(tpi_dir)
        tpi_vars = os.path.join(tpi_dir, "TPI_vars.pkl")
        pickle.dump(tpi_output, open(tpi_vars, "wb"))

        print("Time path iteration complete.")
    print("It took {0} seconds to get that part done.".format(time.time() -
                                                              tick))
Example #31
0
def runner(output_base, baseline_dir, test=False, time_path=True, baseline=False,
  analytical_mtrs=False, age_specific=False, reform={}, user_params={},
  guid='', run_micro=True, small_open=False, budget_balance=False, baseline_spending=False):

    #from ogusa import parameters, wealth, labor, demographics, income
    from ogusa import parameters, demographics, income, utils
    from ogusa import txfunc

    tick = time.time()
    
    # Make sure options are internally consistent
    if baseline==True and baseline_spending==True:
        print 'Inconsistent options. Setting <baseline_spending> to False, leaving <baseline> True.'
        baseline_spending = False
    if budget_balance==True and baseline_spending==True:
        print 'Inconsistent options. Setting <baseline_spending> to False, leaving <budget_balance> True.'
        baseline_spending = False

    #Create output directory structure
    saved_moments_dir = os.path.join(output_base, "Saved_moments")
    ss_dir = os.path.join(output_base, "SS")
    tpi_dir = os.path.join(output_base, "TPI")
    dirs = [saved_moments_dir, ss_dir, tpi_dir]
    for _dir in dirs:
        try:
            print "making dir: ", _dir
            os.makedirs(_dir)
        except OSError as oe:
            pass

    if run_micro:
        txfunc.get_tax_func_estimate(baseline=baseline, analytical_mtrs=analytical_mtrs, age_specific=age_specific,
                                     start_year=user_params['start_year'], reform=reform, guid=guid)
    print 'In runner, baseline is ', baseline
    run_params = ogusa.parameters.get_parameters(test=test, baseline=baseline, guid=guid)
    run_params['analytical_mtrs'] = analytical_mtrs
    run_params['small_open'] = small_open
    run_params['budget_balance'] = budget_balance

    # Modify ogusa parameters based on user input
    if 'frisch' in user_params:
        print "updating frisch and associated"
        b_ellipse, upsilon = ogusa.elliptical_u_est.estimation(user_params['frisch'],
                                                               run_params['ltilde'])
        run_params['b_ellipse'] = b_ellipse
        run_params['upsilon'] = upsilon
        run_params.update(user_params)
    if 'debt_ratio_ss' in user_params:
        run_params['debt_ratio_ss']=user_params['debt_ratio_ss']

    # Modify ogusa parameters based on user input
    if 'g_y_annual' in user_params:
        print "updating g_y_annual and associated"
        ending_age = run_params['ending_age']
        starting_age = run_params['starting_age']
        S = run_params['S']
        g_y = (1 + user_params['g_y_annual'])**(float(ending_age - starting_age) / S) - 1
        run_params['g_y'] = g_y
        run_params.update(user_params)
        
    # Modify transfer & spending ratios based on user input.
    if 'T_shifts' in user_params:
        if baseline_spending==False:
            print 'updating ALPHA_T with T_shifts in first', user_params['T_shifts'].size, 'periods.'                                            
            T_shifts = np.concatenate((user_params['T_shifts'], np.zeros(run_params['ALPHA_T'].size - user_params['T_shifts'].size)), axis=0)
            run_params['ALPHA_T'] = run_params['ALPHA_T'] + T_shifts
    if 'G_shifts' in user_params:
        if baseline_spending==False:
            print 'updating ALPHA_G with G_shifts in first', user_params['G_shifts'].size, 'periods.'                                            
            G_shifts = np.concatenate((user_params['G_shifts'], np.zeros(run_params['ALPHA_G'].size - user_params['G_shifts'].size)), axis=0)
            run_params['ALPHA_G'] = run_params['ALPHA_G'] + G_shifts

    from ogusa import SS, TPI

    calibrate_model = False
    # List of parameter names that will not be changing (unless we decide to
    # change them for a tax experiment)

    param_names = ['S', 'J', 'T', 'BW', 'lambdas', 'starting_age', 'ending_age',
                'beta', 'sigma', 'alpha', 'gamma', 'epsilon', 'nu', 'Z', 'delta', 'E',
                'ltilde', 'g_y', 'maxiter', 'mindist_SS', 'mindist_TPI',
                'analytical_mtrs', 'b_ellipse', 'k_ellipse', 'upsilon',
                'small_open', 'budget_balance', 'ss_firm_r', 'ss_hh_r', 'tpi_firm_r', 'tpi_hh_r',
                'tG1', 'tG2', 'alpha_T', 'alpha_G', 'ALPHA_T', 'ALPHA_G', 'rho_G', 'debt_ratio_ss',
                'tau_b', 'delta_tau',
                'chi_b_guess', 'chi_n_guess','etr_params','mtrx_params',
                'mtry_params','tau_payroll', 'tau_bq',
                'retire', 'mean_income_data', 'g_n_vector',
                'h_wealth', 'p_wealth', 'm_wealth',
                'omega', 'g_n_ss', 'omega_SS', 'surv_rate', 'imm_rates','e', 'rho',
                'initial_debt','omega_S_preTP']

    '''
    ------------------------------------------------------------------------
        Run SS
    ------------------------------------------------------------------------
    '''

    sim_params = {}
    for key in param_names:
        sim_params[key] = run_params[key]

    sim_params['output_dir'] = output_base
    sim_params['run_params'] = run_params
    income_tax_params, ss_parameters, iterative_params, chi_params, small_open_params = SS.create_steady_state_parameters(**sim_params)

    ss_outputs = SS.run_SS(income_tax_params, ss_parameters, iterative_params, chi_params, small_open_params, baseline, baseline_spending,
                                     baseline_dir=baseline_dir)

    '''
    ------------------------------------------------------------------------
        Pickle SS results
    ------------------------------------------------------------------------
    '''
    if baseline:
        utils.mkdirs(os.path.join(baseline_dir, "SS"))
        ss_dir = os.path.join(baseline_dir, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
    else:
        utils.mkdirs(os.path.join(output_base, "SS"))
        ss_dir = os.path.join(output_base, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))

    if time_path:
        '''
        ------------------------------------------------------------------------
            Run the TPI simulation
        ------------------------------------------------------------------------
        '''

        sim_params['baseline'] = baseline
        sim_params['baseline_spending'] = baseline_spending
        sim_params['input_dir'] = output_base
        sim_params['baseline_dir'] = baseline_dir


        income_tax_params, tpi_params, iterative_params, small_open_params, initial_values, SS_values, fiscal_params, biz_tax_params = TPI.create_tpi_params(**sim_params)

        tpi_output, macro_output = TPI.run_TPI(income_tax_params, tpi_params, iterative_params, small_open_params, initial_values, 
                                               SS_values, fiscal_params, biz_tax_params, output_dir=output_base, baseline_spending=baseline_spending)

        '''
        ------------------------------------------------------------------------
            Pickle TPI results
        ------------------------------------------------------------------------
        '''
        tpi_dir = os.path.join(output_base, "TPI")
        utils.mkdirs(tpi_dir)
        tpi_vars = os.path.join(tpi_dir, "TPI_vars.pkl")
        pickle.dump(tpi_output, open(tpi_vars, "wb"))

        tpi_dir = os.path.join(output_base, "TPI")
        utils.mkdirs(tpi_dir)
        tpi_vars = os.path.join(tpi_dir, "TPI_macro_vars.pkl")
        pickle.dump(macro_output, open(tpi_vars, "wb"))


        print "Time path iteration complete."
    print "It took {0} seconds to get that part done.".format(time.time() - tick)