def test_customized_model_with_dynamic_input(use_sample_data,
                                             use_dynamic_input_schema):
    model_dir = os.path.join(TEST_INPUT_DIR,
                             "test_customized_model_with_dynamic_input")
    model_path = os.path.join(model_dir, "sample_model.pth")
    if os.path.exists(model_dir):
        shutil.rmtree(model_dir)

    # prepare model and sample input data
    shutil.copytree(
        os.path.join(os.path.dirname(__file__), 'data', 'sample',
                     'sample_model'), model_dir)
    sample_input_data_path = os.path.join(model_dir, 'data.npz')
    sm.save_sample_input_data(sample_input_data_path)

    # prepare model
    inputs_schema = [{
        IOSchemaLoader.NAME_KEY:
        sm.INPUT_NAME,
        IOSchemaLoader.SHAPE_KEY:
        sm.get_input_shape(use_dynamic_input_schema),
        IOSchemaLoader.DTYPE_KEY:
        "float"
    }]
    outputs_schema = [{
        IOSchemaLoader.NAME_KEY:
        sm.OUTPUT_NAME,
        IOSchemaLoader.SHAPE_KEY:
        sm.get_output_shape(use_dynamic_input_schema)
    }]
    onnx_model_path = f"_{str(uuid.uuid4())}.onnx"

    if use_sample_data:
        cvt_config = ConversionConfig(
            model_path=model_path,
            inputs_schema=inputs_schema,
            outputs_schema=outputs_schema,
            sample_input_data_path=sample_input_data_path,
            onnx_opset=11,
            model_framework="pytorch",
            onnx_model_path=onnx_model_path)
    else:
        cvt_config = ConversionConfig(model_path=model_path,
                                      inputs_schema=inputs_schema,
                                      outputs_schema=outputs_schema,
                                      onnx_opset=11,
                                      model_framework="pytorch",
                                      onnx_model_path=onnx_model_path)

    convert(cvt_config)
    os.remove(onnx_model_path)
Example #2
0
def test_tf_frozen_pb():
    model_path = os.path.join(os.path.dirname(__file__), "models",
                              "full_doran_frozen.pb")
    test_data_path = os.path.join(os.path.dirname(__file__), "models",
                                  "doran.npz")
    inputs_schema = [{
        "name": "title_lengths:0"
    }, {
        "name": "title_encoder:0"
    }, {
        "name": "ratings:0"
    }, {
        "name": "query_lengths:0"
    }, {
        "name": "passage_lengths:0"
    }, {
        "name": "features:0"
    }, {
        "name": "encoder:0"
    }, {
        "name": "decoder:0"
    }, {
        "name": "Placeholder:0"
    }]
    outputs_schema = [{
        "name": "output_identity:0"
    }, {
        "name": "loss_identity:0"
    }]
    cvt_config = ConversionConfig(model_path=model_path,
                                  inputs_schema=inputs_schema,
                                  outputs_schema=outputs_schema,
                                  model_framework="tensorflow",
                                  sample_input_data_path=test_data_path)
    convert(cvt_config)
def test_multiple_inputs():
    # prepare convert parameters
    inputs_schema = []
    input_names = [
        "title_lengths:0", "title_encoder:0", "ratings:0", "query_lengths:0",
        "passage_lengths:0", "features:0", "encoder:0", "decoder:0",
        "Placeholder:0"
    ]
    for name in input_names:
        inputs_schema.append({IOSchemaLoader.NAME_KEY: name})
    outputs_schema = [{
        IOSchemaLoader.NAME_KEY: "output_identity:0"
    }, {
        IOSchemaLoader.NAME_KEY: "loss_identity:0"
    }]
    onnx_model_path = f"_{str(uuid.uuid4())}.onnx"

    # generate input data
    data_path = os.path.join(TF_MODEL_PATH, 'test_data.npz')
    save_test_data_to_disk(data_path)

    cvt_config = ConversionConfig(model_path=os.path.join(
        os.path.dirname(__file__), 'data', 'full_doran_frozen.pb'),
                                  inputs_schema=inputs_schema,
                                  outputs_schema=outputs_schema,
                                  sample_input_data_path=data_path,
                                  model_framework="tensorflow",
                                  onnx_model_path=onnx_model_path)
    convert(cvt_config)
    os.remove(onnx_model_path)
def test_customized_model_multiple_inputs_and_outputs():
    # prepare model
    model_path = os.path.join(TEST_INPUT_DIR,
                              'customized_model_multiple_inputs_outputs',
                              f"_{str(uuid.uuid4())}.pth")
    inputs_schema = [{
        IOSchemaLoader.SHAPE_KEY: [10, 3, 244, 244],
        IOSchemaLoader.DTYPE_KEY: "float",
        IOSchemaLoader.NAME_KEY: "multiple_in_0"
    }, {
        IOSchemaLoader.SHAPE_KEY: [10, 3, 244, 244],
        IOSchemaLoader.DTYPE_KEY: "float",
        IOSchemaLoader.NAME_KEY: "multiple_in_1"
    }]
    outputs_schema = [{
        IOSchemaLoader.NAME_KEY: "multiple_out_0"
    }, {
        IOSchemaLoader.NAME_KEY: "multiple_out_1"
    }]
    onnx_model_path = f"_{str(uuid.uuid4())}.onnx"
    prepare_model(model_path, "customized_model_multiple_inputs_outputs",
                  len(inputs_schema))

    cvt_config = ConversionConfig(
        model_path=model_path,
        inputs_schema=inputs_schema,
        outputs_schema=outputs_schema,
        sample_input_data_path=CUSTOMIZED_MODEL_MULTIPLE_INPUTS_OUTPUTS_DATA,
        model_framework="pytorch",
        onnx_model_path=onnx_model_path)
    convert(cvt_config)
    os.remove(onnx_model_path)
def test_saved_model():
    logging.info("converting... saved_model")
    onnx_model_path = f"_{str(uuid.uuid4())}.onnx"
    cvt_config = ConversionConfig(model_path=os.path.join(
        TF_MODEL_PATH, "saved_model"),
                                  model_framework="tensorflow",
                                  onnx_model_path=onnx_model_path)
    convert(cvt_config)
    os.remove(onnx_model_path)
Example #6
0
def test_pytorch():
    model_path = os.path.join(os.path.dirname(__file__), "models",
                              "squeezenet1_1.pth")
    inputs_schema = [{"name": "input_0", "shape": [1, 3, 244, 244]}]
    outputs_schema = [{"name": "output_0"}]
    cvt_config = ConversionConfig(model_path=model_path,
                                  inputs_schema=inputs_schema,
                                  outputs_schema=outputs_schema,
                                  model_framework="pytorch")
    convert(cvt_config)
Example #7
0
def test_tf_saved_model():
    model_path = os.path.join(os.path.dirname(__file__), "models",
                              "saved_model")
    inputs_schema = [{"name": "X:0"}]
    outputs_schema = [{"name": "pred:0"}]
    cvt_config = ConversionConfig(model_path=model_path,
                                  inputs_schema=inputs_schema,
                                  outputs_schema=outputs_schema,
                                  model_framework="tensorflow")
    convert(cvt_config)
Example #8
0
def test_tf_checkpoint():
    model_path = os.path.join(os.path.dirname(__file__), "models", "tf_ckpt",
                              "model.ckpt.meta")
    inputs_schema = [{"name": "input:0"}]
    outputs_schema = [{"name": "result:0"}]
    cvt_config = ConversionConfig(model_path=model_path,
                                  inputs_schema=inputs_schema,
                                  outputs_schema=outputs_schema,
                                  model_framework="tensorflow")
    convert(cvt_config)
def test_frozen_graph():
    logging.info("converting... frozen_graph")
    inputs_schema = SCHEMAS[0]
    outputs_schema = SCHEMAS[1]
    onnx_model_path = f"_{str(uuid.uuid4())}.onnx"
    cvt_config = ConversionConfig(model_path=os.path.join(
        TF_MODEL_PATH, "mnist_frozen.pb"),
                                  inputs_schema=inputs_schema,
                                  outputs_schema=outputs_schema,
                                  model_framework="tensorflow",
                                  onnx_model_path=onnx_model_path)
    convert(cvt_config)
    os.remove(onnx_model_path)
def test_checkpoint():
    # test the checkpoint model with .meta file
    logging.info("converting... checkpoint")
    inputs_schema = SCHEMAS[0]
    outputs_schema = SCHEMAS[1]
    onnx_model_path = f"_{str(uuid.uuid4())}.onnx"
    cvt_config = ConversionConfig(model_path=os.path.join(
        TF_MODEL_PATH, "ckpt", 'model.ckpt.meta'),
                                  inputs_schema=inputs_schema,
                                  outputs_schema=outputs_schema,
                                  model_framework="tensorflow",
                                  onnx_model_path=onnx_model_path)
    convert(cvt_config)
    os.remove(onnx_model_path)
def test_saved_model_with_npz():
    logging.info("converting... saved_model")
    inputs_schema = SCHEMAS[0]
    outputs_schema = SCHEMAS[1]
    onnx_model_path = f"_{str(uuid.uuid4())}.onnx"
    cvt_config = ConversionConfig(model_path=os.path.join(
        TF_MODEL_PATH, "saved_model"),
                                  inputs_schema=inputs_schema,
                                  outputs_schema=outputs_schema,
                                  sample_input_data_path=TF_INPUT_DATA,
                                  model_framework="tensorflow",
                                  onnx_model_path=onnx_model_path)
    convert(cvt_config)
    os.remove(onnx_model_path)
def test_frozen_graph_with_negative_shape():
    logging.info("converting... frozen_graph")
    inputs_schema = [{
        IOSchemaLoader.NAME_KEY: "input:0",
        IOSchemaLoader.SHAPE_KEY: [-1, 784]
    }]
    outputs_schema = SCHEMAS[1]
    onnx_model_path = f"_{str(uuid.uuid4())}.onnx"
    cvt_config = ConversionConfig(model_path=os.path.join(
        TF_MODEL_PATH, "mnist_frozen.pb"),
                                  inputs_schema=inputs_schema,
                                  outputs_schema=outputs_schema,
                                  model_framework="tensorflow",
                                  onnx_model_path=onnx_model_path)
    convert(cvt_config)
    os.remove(onnx_model_path)
def test_infogan_pb():
    logging.info("converting... infogan model")

    # convert
    inputs_schema = [{
        IOSchemaLoader.NAME_KEY: "zc_vectors:0",
        IOSchemaLoader.DTYPE_KEY: "float32",
        IOSchemaLoader.SHAPE_KEY: [10, 74]
    }, {
        IOSchemaLoader.NAME_KEY: "is_training_generator:0",
        IOSchemaLoader.DTYPE_KEY: "bool",
        IOSchemaLoader.SHAPE_KEY: []
    }]
    outputs_schema = [{IOSchemaLoader.NAME_KEY: "generator/layer_3/Sigmoid:0"}]

    test_data_path = os.path.join(os.path.dirname(__file__), "data",
                                  "infogan_inputs.npz")
    data = np.load(test_data_path, allow_pickle=True)
    for x in np.ndenumerate(data):
        real_data1 = np.array(x[1]['zc_vectors:0'], dtype=np.float32)
        real_data2 = np.array(x[1]['is_training_generator:0'])
        data = [real_data1, real_data2]
        break

    name_list = ["zc_vectors:0", "is_training_generator:0"]
    test_data = dict(zip(name_list, data))
    npz_file_path = os.path.join(os.path.dirname(__file__), "data",
                                 "test_infogan_inputs.npz")
    np.savez(npz_file_path, **test_data)

    onnx_model_path = f"{str(uuid.uuid4())}.onnx"
    cvt_config = ConversionConfig(model_path=os.path.join(
        os.path.dirname(__file__), 'data', "infogan_after_tf_optimize.pb"),
                                  inputs_schema=inputs_schema,
                                  outputs_schema=outputs_schema,
                                  sample_input_data_path=npz_file_path,
                                  model_framework="tensorflow",
                                  onnx_model_path=onnx_model_path)
    convert(cvt_config)

    # make sure the first input of the converted ONNX model is dynamic
    import onnxruntime as ort
    sess = ort.InferenceSession(onnx_model_path,
                                providers=["CPUExecutionProvider"])
    assert 'unk' in sess.get_inputs()[0].shape[0]
    assert 74 == sess.get_inputs()[0].shape[1]
    os.remove(onnx_model_path)
Example #14
0
def test_customized_model_with_sub_dir():
    model_dir = os.path.join(TEST_INPUT_DIR,
                             "test_customized_model_with_sub_dir")
    if os.path.exists(model_dir):
        shutil.rmtree(model_dir)

    # prepare model
    shutil.copytree(
        os.path.join(os.path.dirname(__file__), 'data', 'sample',
                     "multi_file_model"), os.path.join(model_dir))

    model_path = os.path.join(model_dir, "data/multi_file_model.pth")

    # prepare model
    inputs_schema = []
    for name, shape in zip(mf.get_input_names(), mf.get_input_shapes()):
        inputs_schema.append({
            IOSchemaLoader.NAME_KEY: name,
            IOSchemaLoader.SHAPE_KEY: shape
        })

    outputs_schema = []
    for name in mf.get_output_names():
        outputs_schema.append({IOSchemaLoader.NAME_KEY: name})
    onnx_model_path = f"_{str(uuid.uuid4())}.onnx"

    cvt_config = ConversionConfig(model_path=model_path,
                                  inputs_schema=inputs_schema,
                                  outputs_schema=outputs_schema,
                                  model_root_path=os.path.join(
                                      model_dir, 'src'),
                                  model_framework="pytorch",
                                  onnx_opset=11,
                                  onnx_model_path=onnx_model_path)
    convert(cvt_config)
    os.remove(onnx_model_path)

    # exclude script if it's already appended during conversion
    for p in sys.path:
        if p.startswith(model_dir):
            sys.path.remove(p)
Example #15
0
def test_script_module():
    # prepare model
    model_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),
                              'models', 'scriptmodule.pt')
    inputs_schema = [{
        IOSchemaLoader.SHAPE_KEY: [1],
        IOSchemaLoader.NAME_KEY: "input_0"
    }]
    outputs_schema = [{
        IOSchemaLoader.SHAPE_KEY: [1],
        IOSchemaLoader.NAME_KEY: "output_0"
    }]
    onnx_model_path = f"_{str(uuid.uuid4())}.onnx"
    # test
    cvt_config = ConversionConfig(model_path=model_path,
                                  inputs_schema=inputs_schema,
                                  outputs_schema=outputs_schema,
                                  onnx_opset=11,
                                  model_framework="pytorch",
                                  onnx_model_path=onnx_model_path)
    convert(cvt_config)
    os.remove(onnx_model_path)
Example #16
0
def test_pretrained_model_classification(model_name):
    # prepare model
    model_path = os.path.join(TEST_INPUT_DIR, model_name,
                              f"_{str(uuid.uuid4())}.pth")
    prepare_model(model_path, model_name)

    # test
    inputs_schema = [{
        IOSchemaLoader.SHAPE_KEY: [1, 3, 244, 244],
        IOSchemaLoader.DTYPE_KEY: "float",
        IOSchemaLoader.NAME_KEY: "input_0"
    }]
    outputs_schema = [{IOSchemaLoader.NAME_KEY: "output_0"}]
    onnx_model_path = f"_{str(uuid.uuid4())}.onnx"
    cvt_config = ConversionConfig(model_path=model_path,
                                  inputs_schema=inputs_schema,
                                  outputs_schema=outputs_schema,
                                  model_framework="pytorch",
                                  onnx_model_path=onnx_model_path,
                                  onnx_opset=11)
    convert(cvt_config)
    os.remove(onnx_model_path)
Example #17
0
def test_pretrained_model_video_r3d_18():
    # prepare model
    model_path = os.path.join(TEST_INPUT_DIR, 'video_r3d_18',
                              f"_{str(uuid.uuid4())}.pth")
    prepare_model(model_path, "video_r3d_18", 1)

    # test
    inputs_schema = [{
        IOSchemaLoader.SHAPE_KEY: [2, 3, 4, 112, 112],
        IOSchemaLoader.DTYPE_KEY: "float",
        IOSchemaLoader.NAME_KEY: "input_0"
    }]
    outputs_schema = [{IOSchemaLoader.NAME_KEY: "output_0"}]
    onnx_model_path = f"_{str(uuid.uuid4())}.onnx"
    cvt_config = ConversionConfig(
        model_path=model_path,
        inputs_schema=inputs_schema,
        outputs_schema=outputs_schema,
        sample_input_data_path=PRETRAINED_MODEL_VIDEO_DATA,
        onnx_opset=11,
        model_framework="pytorch",
        onnx_model_path=onnx_model_path)
    convert(cvt_config)
    os.remove(onnx_model_path)