Example #1
0
def test_fetch_hpos_valid_results_first_time(client):
    config = copy.deepcopy(CONFIG)
    num_trials = 5
    config['count'] = num_trials
    config['fidelity'] = Fidelity(1, 1, name='epoch').to_dict()

    register_hpo(client, NAMESPACE + '1', foo, config, {'e': 2})
    register_hpo(client, NAMESPACE + '2', foo, config, {'e': 2})

    worker = TrialWorker(URI, DATABASE, 0, None)
    worker.max_retry = 0
    worker.timeout = 1
    worker.run()

    namespaces = {'hpo' + str(i): [NAMESPACE + str(i)] for i in range(1, 3)}

    data = defaultdict(dict)
    _ = fetch_hpos_valid_curves(client, namespaces, ['e'], data)

    assert len(data) == 2
    assert len(data['hpo1']) == 1
    assert len(data['hpo2']) == 1

    namespace = f'{NAMESPACE}1'
    assert data['hpo1'][namespace].attrs['namespace'] == namespace
    assert data['hpo1'][namespace].epoch.values.tolist() == [0, 1]
    assert data['hpo1'][namespace].order.values.tolist() == list(
        range(num_trials))
    assert data['hpo1'][namespace].seed.values.tolist() == [1]
    assert data['hpo1'][namespace].params.values.tolist() == list('abcd')
    assert data['hpo1'][namespace].noise.values.tolist() == ['e']
    assert data['hpo1'][namespace].obj.shape == (2, num_trials, 1)
    assert data['hpo1'][namespace].valid.shape == (2, num_trials, 1)

    assert data['hpo1'][namespace] == data['hpo2'][f'{NAMESPACE}2']
Example #2
0
def test_get_hpo_completed(client):

    register_hpo(client, NAMESPACE, foo, CONFIG, {'e': 2})

    worker = TrialWorker(URI, DATABASE, 0, NAMESPACE)
    worker.max_retry = 0
    worker.run()

    hpo, remote_call = get_hpo(client, NAMESPACE)

    assert len(hpo.trials) == 1
    state_dict = hpo.state_dict(compressed=False)
    assert state_dict['seed'] == CONFIG['seed']
    assert state_dict['fidelity'] == CONFIG['fidelity']
    state_dict['space'].pop('uid')
    assert state_dict['space'] == CONFIG['space']

    # Verify default was passed properly
    assert remote_call['kwargs']['e'] == 2
    remote_call['kwargs'].update(dict(a=1, b=1, c=1, d=1, uid=0,
                                      client=client))

    # Verify that the remote_call is indeed callable.
    a = 1
    b = 1
    c = 1
    d = 1
    e = 2
    assert exec_remote_call(remote_call) == a + 2 * b - c**2 + d + e
Example #3
0
    def run_hpos(namespaces):
        for namespace in namespaces:
            register_hpo(client, namespace, foo, config, {'e': 2})

        worker = TrialWorker(URI, DATABASE, 0, None)
        worker.max_retry = 0
        worker.timeout = 1
        worker.run()
Example #4
0
    def run_hpos(namespaces):
        for i, namespace in enumerate(namespaces):
            config['seed'] = i
            register_hpo(client, namespace, foo, config, {'e': 2})

        worker = TrialWorker(URI, DATABASE, 0, None)
        worker.max_retry = 0
        worker.timeout = 1
        worker.run()
Example #5
0
def test_is_hpo_completed(client):

    assert not is_hpo_completed(client, NAMESPACE)

    register_hpo(client, NAMESPACE, foo, CONFIG, DEFAULTS)

    assert not is_hpo_completed(client, NAMESPACE)

    worker = TrialWorker(URI, DATABASE, 0, NAMESPACE)
    worker.max_retry = 0
    worker.run()

    assert is_hpo_completed(client, NAMESPACE)
def test_plot(client):
    config = copy.deepcopy(CONFIG)
    num_trials = 10
    config['count'] = num_trials
    config['fidelity'] = Fidelity(1, 1, name='epoch').to_dict()

    register_hpo(client, NAMESPACE, foo, config, {'e': 2})
    worker = TrialWorker(URI, DATABASE, 0, NAMESPACE)
    worker.max_retry = 0
    worker.run()

    data = fetch_hpo_valid_curves(client, NAMESPACE, ['e'])

    plot(config['space'], 'obj', data, 'test.png')
Example #7
0
def test_hpo_serializable(model_type):
    namespace = 'test-robo-' + model_type
    n_init = 2
    count = 10

    # First run using a remote worker where serialization is necessary
    # and for which hpo is resumed between each braning call
    hpo = build_robo(model_type, n_init=n_init, count=count)

    namespace = 'test_hpo_serializable'
    hpo = {
        'hpo': make_remote_call(HPOptimizer, **hpo.kwargs),
        'hpo_state': None,
        'work': make_remote_call(branin),
        'experiment': namespace
    }
    client = new_client(URI, DATABASE)
    client.push(WORK_QUEUE, namespace, message=hpo, mtype=HPO_ITEM)
    worker = TrialWorker(URI, DATABASE, 0, None)
    worker.max_retry = 0
    worker.timeout = 1
    worker.run()

    messages = client.monitor().unread_messages(RESULT_QUEUE, namespace)
    for m in messages:
        if m.mtype == HPO_ITEM:
            break

    assert m.mtype == HPO_ITEM, 'HPO not completed'
    worker_hpo = build_robo(model_type)
    worker_hpo.load_state_dict(m.message['hpo_state'])
    assert len(worker_hpo.trials) == count

    # Then run locally where BO is not resumed
    local_hpo = build_robo(model_type, n_init=n_init, count=count)
    i = 0
    best = float('inf')
    while local_hpo.remaining() and i < local_hpo.hpo.count:
        samples = local_hpo.suggest()
        for sample in samples:
            z = branin(**sample)
            local_hpo.observe(sample['uid'], z)
            best = min(z, best)
            i += 1

    assert i == local_hpo.hpo.count

    # Although remote worker was resumed many times, it should give the same
    # results as the local one which was executed in a single run.
    assert worker_hpo.trials == local_hpo.trials
Example #8
0
def test_save_load_results(client):
    config = copy.deepcopy(CONFIG)
    num_trials = 2
    config['count'] = num_trials
    config['fidelity'] = Fidelity(1, 1, name='epoch').to_dict()

    register_hpo(client, NAMESPACE, foo, config, {'e': 2})
    worker = TrialWorker(URI, DATABASE, 0, NAMESPACE)
    worker.max_retry = 0
    worker.run()

    data = fetch_hpo_valid_curves(client, NAMESPACE, ['e'])

    save_results(NAMESPACE, data, '.')

    assert load_results(NAMESPACE, '.')
Example #9
0
def test_fetch_hpo_valid_results_no_epochs(client):
    config = copy.deepcopy(CONFIG)
    num_trials = 5
    config['count'] = num_trials
    config['fidelity'] = Fidelity(1, 1, name='epoch').to_dict()

    register_hpo(client, NAMESPACE, foo, config, {'e': 2})
    worker = TrialWorker(URI, DATABASE, 0, NAMESPACE)
    worker.max_retry = 0
    worker.run()

    data = fetch_hpo_valid_curves(client, NAMESPACE, ['e'])

    assert data.attrs['namespace'] == NAMESPACE
    assert data.epoch.values.tolist() == [0, 1]
    assert data.order.values.tolist() == list(range(num_trials))
    assert data.seed.values.tolist() == [1]
    assert data.params.values.tolist() == list('abcd')
    assert data.noise.values.tolist() == ['e']
    assert data.obj.shape == (2, num_trials, 1)
    assert data.valid.shape == (2, num_trials, 1)
def test_convert_xarray_to_scipy_results(client):
    config = copy.deepcopy(CONFIG)
    num_trials = 10
    config['count'] = num_trials
    config['fidelity'] = Fidelity(1, 1, name='epoch').to_dict()

    register_hpo(client, NAMESPACE, foo, config, {'e': 2})
    worker = TrialWorker(URI, DATABASE, 0, NAMESPACE)
    worker.max_retry = 0
    worker.run()

    data = fetch_hpo_valid_curves(client, NAMESPACE, ['e'])

    scipy_results = xarray_to_scipy_results(config['space'], 'obj', data)

    min_idx = numpy.argmin(data.obj.values[1, :, 0])

    assert scipy_results.x[0] == data.a.values[min_idx, 0]
    assert scipy_results.x[1] == data.b.values[min_idx, 0]
    assert scipy_results.x[2] == data.c.values[min_idx, 0]
    assert scipy_results.x[3] == numpy.log(data.d.values[min_idx, 0])
    assert scipy_results.fun == data.obj.values[1, min_idx, 0]
    assert len(scipy_results.x_iters) == num_trials
Example #11
0
def test_fetch_hpo_valid_results(client):
    config = copy.deepcopy(CONFIG)
    num_trials = 5
    config['count'] = num_trials

    register_hpo(client, NAMESPACE, foo, config, {'e': 2})
    worker = TrialWorker(URI, DATABASE, 0, NAMESPACE)
    worker.max_retry = 0
    worker.run()

    data = fetch_hpo_valid_curves(client, NAMESPACE, ['e'])

    assert data.attrs['namespace'] == NAMESPACE
    assert data.epoch.values.tolist() == list(
        range(config['fidelity']['max'] + 1))
    assert data.order.values.tolist() == list(range(num_trials))
    assert data.seed.values.tolist() == [1]
    assert data.params.values.tolist() == list('abcd')
    assert data.noise.values.tolist() == ['e']
    assert data.obj.shape == (config['fidelity']['max'] + 1, num_trials, 1)
    assert numpy.all(
        (data.obj.loc[dict(epoch=10)] -
         data.obj.loc[dict(epoch=0)]) == (numpy.ones((num_trials, 1)) * 10))
Example #12
0
def test_register_hpo_is_actionable(client):
    """Test that the registered HPO have valid workitems and can be executed."""
    namespace = 'test-hpo'
    config = {
        'name': 'random_search',
        'seed': 1,
        'count': 1,
        'fidelity': Fidelity(1, 10, name='d').to_dict(),
        'space': {
            'a': 'uniform(-1, 1)',
            'b': 'uniform(-1, 1)',
            'c': 'uniform(-1, 1)',
            'd': 'uniform(-1, 1)'
        }
    }

    defaults = {}
    register_hpo(client, namespace, foo, config, defaults)
    worker = TrialWorker(URI, DATABASE, 0, namespace)
    worker.max_retry = 0
    worker.run()

    assert client.monitor().read_count(WORK_QUEUE, namespace,
                                       mtype=WORK_ITEM) == 1
    assert client.monitor().read_count(WORK_QUEUE, namespace,
                                       mtype=HPO_ITEM) == 2

    messages = client.monitor().unread_messages(RESULT_QUEUE,
                                                namespace,
                                                mtype=HPO_ITEM)

    compressed_state = messages[0].message.get('hpo_state')
    assert compressed_state is not None
    state = decompress_dict(compressed_state)

    assert len(state['trials']) == 1
    assert state['trials'][0][1]['objectives'] == [10.715799430116764]
def test_fetch_results_all_completed(client):
    defaults = {'a': 1000, 'b': 1001}
    params = {'c': 2, 'd': 3, 'epoch': 5}
    defaults.update(params)
    medians = ['a']
    num_items = 2
    configs = generate(range(num_items), 'ab', defaults=defaults)
    namespace = 'test'
    register(client, foo, namespace, configs)

    print(configs)

    worker = TrialWorker(URI, DATABASE, 0, None)
    worker.max_retry = 0
    worker.timeout = 1
    worker.run()

    print(fetch_vars_stats(client, namespace))

    data = fetch_results(client, namespace, configs, medians, params, defaults)

    assert data.medians == ['a']
    assert data.noise.values.tolist() == ['a', 'b']
    assert data.params.values.tolist() == ['c', 'd']
    assert data.order.values.tolist() == [0, 1]
    assert data.epoch.values.tolist() == list(range(params['epoch'] + 1))
    assert data.uid.shape == (3, 2)
    assert data.seed.values.tolist(
    ) == data.noise.values.tolist() + ['reference']
    assert data.a.values.tolist() == [[0, 1000, 1000], [1, 1000, 1000]]
    assert data.b.values.tolist() == [[1001, 0, 1001], [1001, 1, 1001]]
    assert data.c.values.tolist() == [[2, 2, 2], [2, 2, 2]]
    assert data.d.values.tolist() == [[3, 3, 3], [3, 3, 3]]

    assert (data.obj.loc[dict(order=0, seed='a')].values.tolist() == list(
        range(2002, 2002 + params['epoch'] + 1)))
Example #14
0
def test_consolidate_results(client):
    num_experiments = 5
    num_replicates = 10
    space = {
        'a': 'uniform(lower=-1, upper=1)',
        'b': 'uniform(lower=-1, upper=1)',
        'c': 'uniform(lower=-1, upper=1)'
    }
    variables = {'d': 5}
    defaults = {'e': 2, 'epoch': 5}
    seed = 2
    hpo = 'random_search'
    objective = 'obj'
    fidelity = Fidelity(5, 5, name='epoch').to_dict()

    surrogate_budget = 10
    hpo_budget = 5

    configs = generate_hpos(list(range(num_experiments)), [hpo],
                            budget=surrogate_budget,
                            fidelity=fidelity,
                            search_space=space,
                            namespace=NAMESPACE,
                            defaults=defaults)

    to_replicate = get_configs_to_replicate(configs, num_experiments)

    reset_pool_size(configs['random_search'])
    randomize_seeds(configs['random_search'], variables, seed)

    variable_names = list(sorted(variables.keys()))

    hpo_stats = fetch_all_hpo_stats(client, NAMESPACE)

    namespaces = register_hpos(client, NAMESPACE, foo, configs, defaults,
                               hpo_stats)

    worker = TrialWorker(URI, DATABASE, 0, None)
    worker.max_retry = 0
    worker.timeout = 0.02
    worker.run()

    data = defaultdict(dict)
    hpos_ready, remainings = fetch_hpos_valid_curves(client, namespaces,
                                                     variable_names, data)

    ready_configs = get_ready_configs(hpos_ready, configs, to_replicate)

    replicates = generate_replicates(ready_configs,
                                     data,
                                     variables,
                                     objective,
                                     hpo_budget,
                                     num_replicates,
                                     early_stopping=False)
    register(client, foo, NAMESPACE, replicates)

    worker = TrialWorker(URI, DATABASE, 0, None)
    worker.max_retry = 0
    worker.timeout = 0.02
    worker.run()
    print(fetch_vars_stats(client, NAMESPACE))

    data = fetch_hpos_replicates(client, configs, replicates, variable_names,
                                 space, data)
    data = consolidate_results(data)

    assert len(data) == 1
    assert len(data['random_search']) == 4

    hpo_reps = data['random_search']
    assert hpo_reps['ideal'].obj.shape == (6, surrogate_budget,
                                           num_experiments)
    assert hpo_reps['biased'].obj.shape == (6, num_replicates, num_experiments)
    assert hpo_reps['simul-fix'].obj.shape == (6, num_replicates,
                                               num_experiments)
    assert hpo_reps['simul-free'].obj.shape == (6, num_replicates,
                                                num_experiments)

    def count_unique(attr):
        return len(set(attr.values.reshape(-1).tolist()))

    # Test sources of variation
    # NOTE: In ideal, source of variation will vary across ideal after consolidation
    #       but it stays fixed during the HPO itself
    assert count_unique(hpo_reps['ideal']['d']) == num_experiments
    assert count_unique(hpo_reps['biased']['d']) == (num_replicates *
                                                     num_experiments)
    assert count_unique(hpo_reps['simul-free']['d']) == (num_replicates *
                                                         num_experiments)
    assert count_unique(hpo_reps['simul-fix']['d']) == num_experiments

    # Test HPs
    assert count_unique(hpo_reps['ideal']['a']) == (num_experiments *
                                                    surrogate_budget)
    assert count_unique(hpo_reps['biased']['a']) == num_experiments
    assert count_unique(hpo_reps['simul-free']['a']) == (num_replicates *
                                                         num_experiments)
    assert count_unique(hpo_reps['simul-fix']['a']) == (num_replicates *
                                                        num_experiments)
    assert numpy.allclose(hpo_reps['simul-free']['a'].values,
                          hpo_reps['simul-fix']['a'].values)