def test_get_values(): np.random.seed(100691) param_vects = np.random.uniform(low=0, high=1, size=(3, 2)) values_vects = np.random.uniform(low=0, high=1, size=(3, 1)) params = [] values = [] for param_vect, value_vect in zip(param_vects, values_vects): params.append(ParameterVector().from_dict({ 'p0': param_vect[0], 'p1': param_vect[1] })) values.append(ParameterVector().from_dict({'obj0': value_vect[0]})) obs = Observations() obs.add_observation(params, values) obs_vals = obs.get_values(as_array=True, opposite=False) assert [_.to_array() for _ in values] == list(obs_vals) obs_vals = obs.get_values(as_array=True, opposite=True) assert [-1 * _.to_array() for _ in values] == list(obs_vals) obs_vals = obs.get_values(as_array=False, opposite=False) assert [_.to_dict() for _ in values] == list(obs_vals) obs_vals = obs.get_values(as_array=False, opposite=True) obs_dicts = [_.to_dict() for _ in values] for _, obs_dict in enumerate(obs_dicts): for key, val in obs_dict.items(): assert val == -1 * obs_vals[_][key]
def test_declaration(): np.random.seed(100691) param_vects = np.random.uniform(low=0, high=1, size=(3, 2)) values_vects = np.random.uniform(low=0, high=1, size=(3, 1)) params = [] values = [] for param_vect, value_vect in zip(param_vects, values_vects): params.append( ParameterVector().from_dict({"p0": param_vect[0], "p1": param_vect[1]}) ) values.append(ParameterVector().from_dict({"obj0": value_vect[0]})) observations = Observations() observations.add_observation(params, values) test_params = [param.to_array() for param in params] test_values = [value.to_array() for value in values] assert np.linalg.norm(test_params - observations.get_params()) < 1e-7 assert np.linalg.norm(test_values - observations.get_values()) < 1e-7