def convert_to_config_list(initial_list): if initial_list is None or initial_list == []: raise ValueError( "manifest_filepaths and tarred_audio_filepaths must not be empty.") if not isinstance(initial_list, ListConfig): initial_list = ListConfig([initial_list]) for list_idx, list_val in enumerate(initial_list): if type(list_val) != type(initial_list[0]): raise ValueError( "manifest_filepaths and tarred_audio_filepaths need to be a list of lists for bucketing or just a list of strings" ) if type(initial_list[0]) is not ListConfig: initial_list = ListConfig([initial_list]) return initial_list
def test_lottery_transform(self): """ test the lottery transform when params are indicated in the yaml """ pos = torch.randn(10000, 3) x = torch.randn(10000, 6) dummy = torch.randn(10000, 6) data = Data(pos=pos, x=x, dummy=dummy) conf = ListConfig([{"transform": "GridSampling3D", "params": {"size": 0.1}}, {"transform": "Center"},]) tr = LotteryTransform(transform_options=conf) tr(data) self.assertIsInstance(tr.random_transforms.transforms[0], GridSampling3D) self.assertIsInstance(tr.random_transforms.transforms[1], T.Center)
def test_InstantiateTransforms(self): conf = ListConfig([ { "transform": "GridSampling", "params": { "size": 0.1 } }, { "transform": "Center" }, ]) t = instantiate_transforms(conf) self.assertIsInstance(t.transforms[0], GridSampling) self.assertIsInstance(t.transforms[1], T.Center)