def main(start_date, end_date, gridding_method, grid_name, data_path): # 1. Define a grid # (a) by giving lower-left and upper-right corner grid = omi.Grid( llcrnrlat=19.6, urcrnrlat=25.6, llcrnrlon=108.8, urcrnrlon=117.6, resolution=0.01 ) # (b) or by reading this data from a JSON file # (the default file can be found in omi/data/gridds.json) grid = omi.Grid.by_name(grid_name) # 2. Define parameter for PSM # - gamma (smoothing parameter) # - rho_est (typical maximum value of distribution) rho_est = 4e16 if gridding_method == 'psm': # gamma is computed as function of pixel overlap gamma = omi.compute_smoothing_parameter(1.0, 10.0) # 3. Define a mapping which maps a key to the path in the # HDF file. The function # >>> omi.he5.create_name2dataset(path, list_of_dataset_names, dict) # can be helpful (see above). name2datasets = [NAME2DATASET_NO2, NAME2DATASET_PIXEL] # 4a) data in OMI files can be read by # >>> data = omi.he5.read_datasets(filename, name2dataset) # 4b) or by iterating over orbits from start to end date at the following # location: # os.path.join(data_path, product, 'level2', year, doy, '*.he5') # # (see omi.he5 module for details) products = ['OMNO2.003', 'OMPIXCOR.003'] for timestamp, orbit, data in omi.he5.iter_orbits( start_date, end_date, products, name2datasets, data_path ): # 5) Check for missing corner coordinates, i.e. the zoom product, # which is currently not supported if (data['TiledCornerLongitude'].mask.any() or data['TiledCornerLatitude'].mask.any() ): continue # 6) Clip orbit to grid domain lon = data['FoV75CornerLongitude'] lat = data['FoV75CornerLatitude'] data = omi.clip_orbit(grid, lon, lat, data, boundary=(2,2)) if data['ColumnAmountNO2Trop'].size == 0: continue # 7) Use a self-written function to preprocess the OMI data and # to create the following arrays MxN: # - measurement values # - measurement errors (currently only CVM grids errors) # - estimate of stddev (used in PSM) # - weight of each measurement # (see the function preprocessing for an example) values, errors, stddev, weights = preprocessing(gridding_method, **data) missing_values = values.mask.copy() if np.all(values.mask): continue # 8) Grid orbit using PSM or CVM: print 'time: %s, orbit: %d' % (timestamp, orbit) if gridding_method == 'psm': grid = omi.psm_grid(grid, data['Longitude'], data['Latitude'], data['TiledCornerLongitude'], data['TiledCornerLatitude'], values, errors, stddev, weights, missing_values, data['SpacecraftLongitude'], data['SpacecraftLatitude'], data['SpacecraftAltitude'], gamma[data['ColumnIndices']], rho_est ) else: grid = omi.cvm_grid(grid, data['FoV75CornerLongitude'], data['FoV75CornerLatitude'], values, errors, weights, missing_values) # 9) The distribution of values and errors has to be normalised # with the weight. grid.norm() # 10) The Level 3 product can be saved as HDF5 file # or converted to an image (requires matplotlib and basemap) grid.save_as_he5('test_%s.he5' % gridding_method) grid.save_as_image('test_%s.png' % gridding_method, vmin=0, vmax=rho_est) # 11) It is possible to set values, errors and weights to zero. grid.zero()
def main(start_date, end_date, grid_name, data_path, save_path, x_convolution_number, y_convolution_number, x_convolution_mid, y_convolution_mid): # 1. Define a grid grid = gridname2grid(grid_name) gridcoll = gridname2grid(grid_name) wgrid = gridname2grid(grid_name) grid.values = grid.values * 0.0 wgrid.values = wgrid.values * 0.0 gridcoll.values = gridcoll.values * 0.0 filename = generate_filename(save_path, start_date,grid_name) #fname = '%s.he5' % (filename) fname = '%s.he5' % (filename) if os.path.isfile(fname) == True: print 'Existing file: ', fname else: #print x_convolution_number, y_convolution_number, x_convolution_mid, y_convolution_mid try: print filename # 2. Define parameter for PSM # - gamma (smoothing parameter) # - rho_est (typical maximum value of distribution) rho_est = 4e16 # gamma is computed as function of pixel overlap gamma = omi.compute_smoothing_parameter(1.0, 10.0) # 3. Define a mapping which maps a key to the path in the # HDF file. The function # >>> omi.he5.create_name2dataset(path, list_of_dataset_names, dict) # can be helpful (see above). name2datasets = [NAME2DATASET_NO2, NAME2DATASET_PIXEL] # 4a) data in OMI files can be read by # >>> data = omi.he5.read_datasets(filename, name2dataset) # 4b) or by iterating over orbits from start to end date at the following # location: # os.path.join(data_path, product, 'level2', year, doy, '*.he5') # # (see omi.he5 module for details) products = ['OMNO2.003', 'OMPIXCOR.003'] for timestamp, orbit, data in omi.he5.iter_orbits( start_date, end_date, products, name2datasets, data_path ): print 'time: %s, orbit: %d' % (timestamp, orbit) grid = gridname2grid(grid_name) wgrid = gridname2grid(grid_name) # 5) Check for missing corner coordinates, i.e. the zoom product, # which is currently not supported if (data['TiledCornerLongitude'].mask.any() or data['TiledCornerLatitude'].mask.any() ): continue # 6) Clip orbit to grid domain lon = data['FoV75CornerLongitude'] lat = data['FoV75CornerLatitude'] data = omi.clip_orbit(grid, lon, lat, data, boundary=(2,2)) if data['ColumnAmountNO2Trop'].size == 0: continue values, errors, stddev, weights, cf = preprocessing(**data) missing_values = values.mask.copy() #np.save('values.npy',values) values.dump('values.npy') weights.dump('weights.npy') # JLL 9 Aug 2017: for the Gaussian smoothing, it's necessary that all values being smoothed are valid. # From Annette: use a value that is typical of the area in question. So I will probably look at the # background average for the US to find an appropriate value here. # # This matters because the unmasked data is passed to the convolution, redo_Convolution(A.data, ...) # Afterwards the previously masked values are remasked, so these values should only be used in the # Gaussian smoothing. values.data[values.data<-1e29]=1e15 values.data[values.data==np.nan] = 1e15 valuesmask = values.mask meanvalue = np.nanmean(values) #print 'mask', np.shape(valuesmask) if np.all(values.mask): continue b = np.where(values >4*np.std(values)) try: # JLL 08 Aug 2017: For each value that is above the threshold, find the 3x3 grid of values around it # for i in range(len(b[0])): #print i #print b[0][i], b[1][i], values[b[0][i]][b[1][i]] m = b[0][i] n = b[1][i] B = values[m-1:m+2,n-1:n+2] #print B ,m,n B0 = B*1.0 # JLL 08 Aug 2017: I'm assuming this is to make B0 independent of B? B0[1][1] = np.nan #print B[1][1]/np.nanmean(B[0]) if B[1][1]/np.nanmean(B[0])>= 30: pdb.set_trace() A = values[m-8:m+9,n-1:n+2] amean = np.nanmean(A) replace = redo_Convolution(A.data, x_convolution_number, y_convolution_number, x_convolution_mid, y_convolution_mid) replace2 = replace*(amean/np.nanmean(replace)) values[m-8:m+9,n-1:n+2] = replace2 except: print 'no std to high' values = ma.array(values, mask = valuesmask) new_weight = weights #mask0 = valuesmask #mask0 |= values.data ==np.nan #values = ma.array(values, mask = valuesmask*mask0) #meanconvalues = np.nanmean(values) #values = ma.array(values, mask = valuesmask*mask0)*(meanvalue/meanconvalues) #print np.shape(values), type(values) #values.dump('values3.npy') #print 'mean', np.nanmean(values), meanvalue #print np.max(weights), np.min(weights), np.max(values), np.min(values) print 'time: %s, orbit: %d' % (timestamp, orbit) gamma = omi.compute_smoothing_parameter(40.0, 40.0) #rho_est = 0.01 rho_est = np.max(new_weight)*1.2 wgrid = omi.psm_grid(wgrid, data['Longitude'], data['Latitude'], data['TiledCornerLongitude'], data['TiledCornerLatitude'], new_weight, errors,new_weight*0.9, weights, missing_values, data['SpacecraftLongitude'], data['SpacecraftLatitude'], data['SpacecraftAltitude'], gamma[data['ColumnIndices']], rho_est ) print 'wgrid vorbei' #rho_est = 4e16 rho_est = np.max(values)*1.2 gamma = omi.compute_smoothing_parameter(1.0, 10.0) grid = omi.psm_grid(grid, data['Longitude'], data['Latitude'], data['TiledCornerLongitude'], data['TiledCornerLatitude'], values, errors, stddev, weights, missing_values, data['SpacecraftLongitude'], data['SpacecraftLatitude'], data['SpacecraftAltitude'], gamma[data['ColumnIndices']], rho_est ) print 'grid vorbei' grid.norm() wgrid.norm() wgrid.values = np.clip(np.array(wgrid.values), 0.01, np.max(np.array(wgrid.values))) pdb.set_trace() mask = ~np.ma.masked_invalid(grid.values).mask gridcoll.values += np.nan_to_num(grid.values)*np.nan_to_num(wgrid.values)*mask gridcoll.weights += np.nan_to_num(wgrid.values)*mask grid.zero() wgrid.zero() print 'gridzero, wgridzero' # 9) The distribution of values and errors has to be normalised # with the weight. print 'doof' gridcoll.norm() print 'doof2' print filename gridcoll.save_as_he5('%s_clip_end.he5' % (filename)) #gridcoll.save_as_image('%s.png' % (filename), vmin=0, vmax=rho_est) print 'geschafft' gridcoll.zero() except: print 'No datas available at following day:', start_date
def main(start_date, end_date, grid_name, data_path, save_path): # 1. Define a grid #grid = omi.Grid(llcrnrlat=40.0, urcrnrlat=55.0,llcrnrlon=-5.0, urcrnrlon=20.0, resolution=0.002); grid_name = 'Germany'#7500*12500 #grid = omi.Grid.by_name(grid_name) #grid = gridname2grid(grid_name) grid = gridname2grid(grid_name) gridcoll = gridname2grid(grid_name) wgrid = gridname2grid(grid_name) grid.values = grid.values * 0.0 wgrid.values = wgrid.values * 0.0 gridcoll.values = gridcoll.values * 0.0 gridcoll.weights = gridcoll.weights * 0.0 filename = generate_filename(save_path, start_date, grid_name) fname = '%s.he5' % (filename) if os.path.isfile(fname) == True: print('Existing file: ', fname) else: try: # 2. Define parameter for PSM # - gamma (smoothing parameter) # - rho_est (typical maximum value of distribution) rho_est = 4e16 # gamma is computed as function of pixel overlap gamma = omi.compute_smoothing_parameter(1.0, 10.0) # 3. Define a mapping which maps a key to the path in the # HDF file. The function # >>> omi.he5.create_name2dataset(path, list_of_dataset_names, dict) # can be helpful (see above). name2datasets = [NAME2DATASET_NO2, NAME2DATASET_PIXEL] # 4a) data in OMI files can be read by # >>> data = omi.he5.read_datasets(filename, name2dataset) # 4b) or by iterating over orbits from start to end date at the following # location: # os.path.join(data_path, product, 'level2', year, doy, '*.he5') # # (see omi.he5 module for details) #products = ['OMNO2.003', 'OMPIXCOR.003'] products = ['BEHR-PSM', 'BEHR-PSM'] pdb.set_trace() for timestamp, orbit, data in omi.he5.iter_orbits( start_date, end_date, products, name2datasets, data_path): print('time: %s, orbit: %d' % (timestamp, orbit)) grid = gridname2grid(grid_name) wgrid = gridname2grid(grid_name) #print '1' # 5) Check for missing corner coordinates, i.e. the zoom product, # which is currently not supported if (data['TiledCornerLongitude'].mask.any() or data['TiledCornerLatitude'].mask.any()): continue # 6) Clip orbit to grid domain lon = data['FoV75CornerLongitude'] lat = data['FoV75CornerLatitude'] data = omi.clip_orbit(grid, lon, lat, data, boundary=(2, 2)) if data['ColumnAmountNO2Trop'].size == 0: continue #print '2' # 7) Use a self-written function to preprocess the OMI data and # to create the following arrays MxN: # - measurement values # - measurement errors (currently only CVM grids errors) # - estimate of stddev (used in PSM) # - weight of each measurement # (see the function preprocessing for an example) values, errors, stddev, weights = preprocessing(**data) missing_values = values.mask.copy() if np.all(values.mask): continue #new_weight = 1/np.sqrt(np.abs((errors/1e15) * (1+2*data['CloudRadianceFraction']**2)))#**(1.0/2.0) new_weight = weights / np.sqrt((np.abs( (errors / 1e15) * (1 + 2 * data['CloudRadianceFraction']**2)))) #**(1.0/2.0) #print 'time: %s, orbit: %d' % (timestamp, orbit) #print '-----------------------------' rho_est = 4e16 gamma = omi.compute_smoothing_parameter(1.0, 10.0) grid = omi.psm_grid(grid, data['Longitude'], data['Latitude'], data['TiledCornerLongitude'], data['TiledCornerLatitude'], values, errors, stddev, weights, missing_values, data['SpacecraftLongitude'], data['SpacecraftLatitude'], data['SpacecraftAltitude'], gamma[data['ColumnIndices']], rho_est) #print '3' gamma = omi.compute_smoothing_parameter(40.0, 40.0) rho_est = 4 wgrid = omi.psm_grid( wgrid, data['Longitude'], data['Latitude'], data['TiledCornerLongitude'], data['TiledCornerLatitude'], new_weight, errors, new_weight * 0.9, weights, missing_values, data['SpacecraftLongitude'], data['SpacecraftLatitude'], data['SpacecraftAltitude'], gamma[data['ColumnIndices']], rho_est) # The 90% of new_weight = std. dev. is a best guess comparing uncertainty # over land and sea #print '4' grid.norm( ) # divides by the weights (at this point, the values in the grid are multiplied by the weights) # Replace by the new weights later #wgrid.norm() # if you normalize wgrid the data is not as smooth as it could be wgrid.values = np.nan_to_num(np.array(wgrid.values)) grid.values = np.nan_to_num(np.array(grid.values)) #grid.values = grid.values/grid.weights #wgrid.values = wgrid.values/wgrid.weights #print 'counter = ', counter, ':', np.max(gridcoll.values), np.max(grid.values), np.max(wgrid.values) gridcoll.values += np.nan_to_num(grid.values) * np.nan_to_num( wgrid.values) gridcoll.weights += wgrid.values grid.zero() wgrid.zero() # 9) The distribution of values and errors has to be normalised # with the weight. gridcoll.norm() #grid.norm() # 10) The Level 3 product can be saved as HDF5 file # or converted to an image (requires matplotlib and basemap rho_est = 4e16 gridcoll.save_as_he5('%s.he5' % (filename)) #gridcoll.save_as_image('%s.png' % (filename), vmin=0, vmax=rho_est) except: print('No datas available at following day:', start_date) #grid.save_as_he5('%s_%s_%s_%s_%s.he5' % (grid_name, str(start_date)[8:10], str(start_date)[5:7], str(start_date)[0:4])) #grid.save_as_image('%s_%s_%s_%s_%s.png' % (grid_name, str(start_date)[8:10],str(start_date)[5:7], str(start_date)[0:4]), vmin=0, vmax=rho_est) #grid.save_as_image('%s_%s_%s_%s_%s.he5' % ( str(start_date)[8:10], str(start_date)[5:7], str(start_date)[0:4], grid_name, gridding_method), vmin=0, vmax=rho_est) # 11) It is possible to set values, errors and weights to zero. grid.zero()
def main(start_date, end_date, gridding_method, grid_name, data_path): # 1. Define a grid # (a) by giving lower-left and upper-right corner #grid_name = "NewAsia" #grid = omi.Grid(llcrnrlat=40.0, urcrnrlat=55.0,llcrnrlon=-5.0, urcrnrlon=20.0, resolution=0.002); grid_name = 'Germany'#7500*12500 #grid = omi.Grid(llcrnrlat= 17.8 , urcrnrlat=53.6 ,llcrnrlon=96.9 , urcrnrlon= 106.8, resolution=0.01); #grid_name = 'Northamerica'#6000*4000 grid = omi.Grid(llcrnrlat=25, urcrnrlat=50.05, llcrnrlon=-125, urcrnrlon=-64.95, resolution=0.05) #grid_name = 'Northamerica'#6000*4000 # (b) or by reading this data from a JSON file # (the default file can be found in omi/data/gridds.json) #grid = omi.Grid.by_name(grid_name) # 2. Define parameter for PSM # - gamma (smoothing parameter) # - rho_est (typical maximum value of distribution) rho_est = 4e16 if gridding_method == 'psm': # gamma is computed as function of pixel overlap gamma = omi.compute_smoothing_parameter(1.0, 10.0) # 3. Define a mapping which maps a key to the path in the # HDF file. The function # >>> omi.he5.create_name2dataset(path, list_of_dataset_names, dict) # can be helpful (see above). name2datasets = [NAME2DATASET_NO2, NAME2DATASET_PIXEL] # 4a) data in OMI files can be read by # >>> data = omi.he5.read_datasets(filename, name2dataset) # 4b) or by iterating over orbits from start to end date at the following # location: # os.path.join(data_path, product, 'level2', year, doy, '*.he5') # # (see omi.he5 module for details) products = ['OMNO2.003', 'OMPIXCOR.003'] #part of the path for timestamp, orbit, data in omi.he5.iter_orbits(start_date, end_date, products, name2datasets, data_path): # debugging check: this loop is occasionally getting what I consider night time swaths that just barely cross # the top of the domain. I deliberately remove those, even though they may be illuminated print 'timestamp =', timestamp if timestamp.hour < 15: continue # 5) Check for missing corner coordinates, i.e. the zoom product, # which is currently not supported if (data['TiledCornerLongitude'].mask.any() or data['TiledCornerLatitude'].mask.any()): continue # 6) Clip orbit to grid domain lon = data['FoV75CornerLongitude'] lat = data['FoV75CornerLatitude'] data = omi.clip_orbit(grid, lon, lat, data, boundary=(2, 2)) if data['ColumnAmountNO2Trop'].size == 0: continue # 7) Use a self-written function to preprocess the OMI data and # to create the following arrays MxN: # - measurement values # - measurement errors (currently only CVM grids errors) # - estimate of stddev (used in PSM) # - weight of each measurement # (see the function preprocessing for an example) values, errors, stddev, weights = preprocessing( gridding_method, **data) missing_values = values.mask.copy() if np.all(values.mask): continue # 8) Grid orbit using PSM or CVM: print 'time: %s, orbit: %d' % (timestamp, orbit) if gridding_method == 'psm': grid = omi.psm_grid(grid, data['Longitude'], data['Latitude'], data['TiledCornerLongitude'], data['TiledCornerLatitude'], values, errors, stddev, weights, missing_values, data['SpacecraftLongitude'], data['SpacecraftLatitude'], data['SpacecraftAltitude'], gamma[data['ColumnIndices']], rho_est) else: grid = omi.cvm_grid(grid, data['FoV75CornerLongitude'], data['FoV75CornerLatitude'], values, errors, weights, missing_values) # 9) The distribution of values and errors has to be normalised # with the weight. grid.norm() # 10) The Level 3 product can be saved as HDF5 file # or converted to an image (requires matplotlib and basemap grid.save_as_he5('%s_%s_%s_%s_%s.he5' % (grid_name, str(start_date)[8:10], str(start_date)[5:7], str(start_date)[0:4], gridding_method)) grid.save_as_image('%s_%s_%s_%s_%s.png' % (grid_name, str(start_date)[8:10], str(start_date)[5:7], str(start_date)[0:4], gridding_method), vmin=0, vmax=1e16) #grid.save_as_image('%s_%s_%s_%s_%s.he5' % ( str(start_date)[8:10], str(start_date)[5:7], str(start_date)[0:4], grid_name, gridding_method), vmin=0, vmax=rho_est) # 11) It is possible to set values, errors and weights to zero. grid.zero()