Example #1
0
    def _fill_na(cls, bars: np.array, n: int, end: Frame, frame_type) -> np.ndarray:
        if frame_type in tf.minute_level_frames:
            convert = tf.int2time
        else:
            convert = tf.int2date

        frames = [convert(x) for x in tf.get_frames_by_count(end, n, frame_type)]
        filled = np.empty(n, dtype=bars.dtype)
        filled[:] = np.nan
        filled["frame"] = frames

        return merge(filled, bars, "frame")
Example #2
0
    async def get_bars(
        self,
        code: str,
        end: Union[datetime.date, datetime.datetime, Arrow],
        n: int,
        frame_type: FrameType,
    ) -> np.ndarray:
        if n == 0:
            return np.ndarray([], dtype=bars_dtype)

        frames = tf.get_frames_by_count(end, n, frame_type)
        tr = self.security.pipeline()
        key = f"{code}:{frame_type.value}"
        [tr.hget(key, int(frame)) for frame in frames]
        recs = await tr.execute()

        converter = (tf.int2time if frame_type in [
            FrameType.MIN1,
            FrameType.MIN5,
            FrameType.MIN15,
            FrameType.MIN30,
            FrameType.MIN60,
        ] else tf.int2date)
        data = np.empty(len(frames), dtype=bars_dtype)
        for i, frame in enumerate(frames):
            rec = recs[i]
            if rec is None:
                data[i] = (converter(frame), None, None, None, None, None,
                           None, None)
            else:
                o, h, l, c, v, a, f = rec.split(" ")
                data[i] = (
                    converter(frame),
                    float(o),
                    float(h),
                    float(l),
                    float(c),
                    float(v),
                    float(a),
                    float(f),
                )

        return data
Example #3
0
    async def get_bars_raw_data(
        self,
        code: str,
        end: Union[datetime.date, datetime.datetime, Arrow],
        n: int,
        frame_type: FrameType,
    ) -> bytes:
        """
        如果没有数据,返回空字节串''
        """
        if n == 0:
            return b""
        frames = tf.get_frames_by_count(end, n, frame_type)

        pl = self.security.pipeline()
        key = f"{code}:{frame_type.value}"
        [pl.hget(key, int(frame), encoding=None) for frame in frames]
        recs = await pl.execute()

        return b"".join(filter(None, recs))
Example #4
0
    def test_get_frames_by_count(self):
        days = [
            20200117,
            20200120,
            20200121,
            20200122,
            20200123,
            20200203,
            20200204,
            20200205,
            20200206,
            20200207,
            20200210,
            20200211,
        ]

        for i in range(len(days)):
            end, n = tf.int2date(days[i]), i + 1
            expected = days[:n]
            actual = tf.get_frames_by_count(end, n, FrameType.DAY)
            logger.debug(
                "get_frames_by_count(%s, %s, %s)->%s", end, n, FrameType.DAY, actual
            )
            self.assertListEqual(expected, list(actual))

        X = [
            (202002041030, 1, [202002041030]),
            (202002041030, 2, [202002041000, 202002041030]),
            (202002041030, 3, [202002031500, 202002041000, 202002041030]),
            (202002041030, 4, [202002031430, 202002031500, 202002041000, 202002041030]),
            (
                202002041030,
                5,
                [202002031400, 202002031430, 202002031500, 202002041000, 202002041030],
            ),
            (
                202002041030,
                6,
                [
                    202002031330,
                    202002031400,
                    202002031430,
                    202002031500,
                    202002041000,
                    202002041030,
                ],
            ),
            (
                202002041030,
                7,
                [
                    202002031130,
                    202002031330,
                    202002031400,
                    202002031430,
                    202002031500,
                    202002041000,
                    202002041030,
                ],
            ),
            (
                202002041030,
                8,
                [
                    202002031100,
                    202002031130,
                    202002031330,
                    202002031400,
                    202002031430,
                    202002031500,
                    202002041000,
                    202002041030,
                ],
            ),
            (
                202002041030,
                9,
                [
                    202002031030,
                    202002031100,
                    202002031130,
                    202002031330,
                    202002031400,
                    202002031430,
                    202002031500,
                    202002041000,
                    202002041030,
                ],
            ),
            (
                202002041030,
                10,
                [
                    202002031000,
                    202002031030,
                    202002031100,
                    202002031130,
                    202002031330,
                    202002031400,
                    202002031430,
                    202002031500,
                    202002041000,
                    202002041030,
                ],
            ),
            (
                202002041030,
                11,
                [
                    202001231500,
                    202002031000,
                    202002031030,
                    202002031100,
                    202002031130,
                    202002031330,
                    202002031400,
                    202002031430,
                    202002031500,
                    202002041000,
                    202002041030,
                ],
            ),
        ]
        for i, (end, n, expected) in enumerate(X):
            end = tf.int2time(end)
            actual = tf.get_frames_by_count(end, n, FrameType.MIN30)
            logger.debug(
                "get_frames_by_count(%s, %s, %s)->%s", end, n, FrameType.DAY, actual
            )
            self.assertListEqual(expected, actual)

        actual = tf.get_frames_by_count(datetime.date(2020, 2, 12), 3, FrameType.MONTH)
        self.assertListEqual([20191129, 20191231, 20200123], actual.tolist())

        actual = tf.get_frames_by_count(datetime.date(2020, 2, 12), 3, FrameType.WEEK)
        self.assertListEqual([20200117, 20200123, 20200207], actual.tolist())