"values.") scalar_names = ', '.join(df["name"].unique()) confidence_level_str = props[ "confidence_level"] if "confidence_level" in props else "none" if confidence_level_str == "none": df = pd.pivot_table(df, values="value", columns=iso_itervars, index=xaxis_itervar) errors_df = None else: confidence_level = float(confidence_level_str[:-1]) / 100 conf_int = lambda values: utils.confidence_interval( confidence_level, values) if len(values) > 1 else math.nan pivoted = pd.pivot_table(df, values="value", columns=iso_itervars, index=xaxis_itervar if xaxis_itervar else "name", aggfunc=[np.mean, conf_int], dropna=False) df = pivoted["mean"] errors_df = pivoted["<lambda>"] legend_cols, _ = utils.extract_label_columns(df) p = plot if chart.is_native_chart() else plt try:
def conf_intv(values): return utils.confidence_interval(confidence_level, values)