def __init__(self, args): super(CustomResnet, self).__init__() layers = get_layers(args.block_layout) self._model = ResNet(layers, args) model_name = args.pretrained_imagenet_model_name if args.pretrained_on_imagenet: load_pretrained_weights(self._model, load_pretrained_model(model_name))
def __init__(self, args): super(Default_Resnet50, self).__init__() block_layout = [[('Bottleneck', 3)], [('Bottleneck', 4)], [('Bottleneck', 6)], [('Bottleneck', 3)]] layers = get_layers(block_layout) self._model = ResNet(layers, args) if args.pretrained_on_imagenet: load_pretrained_weights(self._model, load_pretrained_model('resnet50'))
def __init__(self, args): ''' Given some a patch model, add add some FC layers and a shortcut to make whole image prediction ''' super(CustomBlock_Agg, self).__init__() self.args = args if not args.use_precomputed_hiddens: self.feat_extractor = load_model(args.patch_snapshot, args, False) agg_layers = get_layers(args.block_layout) self._model = ResNet(agg_layers, args)
def __init__(self, args): super(Default_8StageResnet36, self).__init__() block_layout = [[('BasicBlock', 2)], [('BasicBlock', 2)], [('BasicBlock', 2)], [('BasicBlock', 2)], [('BasicBlock', 2)], [('BasicBlock', 2)], [('BasicBlock', 2)], [('BasicBlock', 2)]] layers = get_layers(block_layout) self._model = ResNet(layers, args) if args.pretrained_on_imagenet: load_pretrained_weights(self._model, load_pretrained_model('resnet18'))