theta_t = np.array([-2, -1, 1, 2]) X_t = np.c_[np.ones(5), np.arange(1, 16).reshape((3, 5)).T/10] y_t = np.array([1, 0, 1, 0, 1]) lmda_t = 3 cost, grad = lCF.lr_cost_function(theta_t, X_t, y_t, lmda_t) np.set_printoptions(formatter={'float': '{: 0.6f}'.format}) print('Cost: {:0.7f}'.format(cost)) print('Expected cost: 2.534819') print('Gradients:\n{}'.format(grad)) print('Expected gradients:\n[ 0.146561 -0.548558 0.724722 1.398003]') input('Program paused. Press ENTER to continue') # ===================== Part 2-b: One-vs-All Training ===================== print('Training One-vs-All Logistic Regression ...') lmd = 0.1 all_theta = ova.one_vs_all(X, y, num_labels, lmd) input('Program paused. Press ENTER to continue') # ===================== Part 3: Predict for One-Vs-All ===================== pred = pova.predict_one_vs_all(all_theta, X) print('Training set accuracy: {}'.format(np.mean(pred == y)*100)) input('ex3 Finished. Press ENTER to exit')
input_layer_size = 400 num_labels = 10 # ================== visualize the data ==================================================== rand = np.random.randint(0, 5000, (100, )) # [0, 5000) displayData.data_display(x_data[rand, :]) # get 100 images randomly # ======================= Test case for lrCostFunction ============================= theta_t = np.array([-2, -1, 1, 2]) t = np.linspace(1, 15, 15) / 10 t = t.reshape((3, 5)) x_t = np.column_stack((np.ones((5, 1)), t.T)) y_t = np.array([1, 0, 1, 0, 1]) l_t = 3 cost = lrCostFunction.cost_reg(theta_t, x_t, y_t, l_t) grad = lrCostFunction.grad_reg(theta_t, x_t, y_t, l_t) print("cost is {}".format(cost)) print("expected cost is 2.534819") print("grad is {}".format(grad)) print("expected grad is 0.146561 -0.548558 0.724722 1.398003") # ============================ test end ============================================= # ============================ one vs all:predict =========================================== l = 0.1 theta = oneVsAll.one_vs_all(x_data, y_data, l, num_labels) result = Predict.pred_lr(theta, x_data[1500, :]) np.set_printoptions(precision=2, suppress=True) # don't use scientific notation print("this number is {}".format(result)) # 10 here is 0 plt.imshow(x_data[1500, :].reshape((20, 20)), cmap='gray', vmin=-1, vmax=1) plt.show() accuracy = predictOneVsAll.pred_accuracy(theta, x_data, y_data) print("test 5000 images, accuracy is {:%}".format(accuracy)) # ============================ predict end ======================================================
rand_indices = np.random.permutation(range(m)) selected = X[rand_indices[1:100], :] # 显示手写数字样例 display_data(selected) # ========================= 2.向量化Logistic Rgression ========================= # 测试函数lr_cost_function的功能 """ theta_t = np.array([-2, -1, 1, 2]) X_t = np.c_[np.ones(5), np.arange(1, 16).reshape((3, 5)).T/10] y_t = np.array([1, 0, 1, 0, 1]) lmda_t = 3 cost,grad = lr_cost_function(X_t,y_t,theta_t,lmda_t) np.set_printoptions(formatter={'float': '{: 0.6f}'.format}) print('Cost: {:0.7f}'.format(cost)) print('Expected cost: 3.734819') print('Gradients:\n{}'.format(grad)) print('Expected gradients:\n[ 0.146561 -0.548558 0.724722 1.398003]') """ # 训练模型 lmd = 0.01 num_labels = 10 all_theta = one_vs_all(X, Y, num_labels, lmd) # =============================== 3.预测 ======================================= pred = predict_one_vs_all(X, all_theta) # 这里一定要把Y.shape变成(m,),否则Y.shape = (m,1),带入是无效的 Y = Y.reshape(Y.size) print('Training set accurayc:{}'.format(np.mean(pred == Y) * 100))
# Randomly select 100 data points to display shuffle_100_X = np.arange(0, m, 1, dtype=int) np.random.shuffle(shuffle_100_X) sel = X[shuffle_100_X[0:100], :] display_data(sel) print('Program paused. Press enter to continue.\n') # pause_func() # ============ Part 2a: Vectorize Logistic Regression ============ # Test case for lrCostFunction print('\nTesting lrCostFunction() with regularization') theta_t = np.array([[-2], [-1], [1], [2]]) X_t = np.append(np.ones((5, 1)), np.arange(1, 16).reshape(5, 3, order='F') / 10, axis=1) y_t = np.array([[1], [0], [1], [0], [1]]) lambda_t = 3 J, grad = lr_cost_function(theta_t, X_t, y_t, lambda_t) print('\nCost: \n', J, '\nExpected cost: 2.534819\n') print('Gradients:\n', grad, '\nExpected gradients:\n', ' 0.146561\n -0.548558\n 0.724722\n 1.398003\n') print('Program paused. Press enter to continue.\n') # pause_func() # ============ Part 2b: One-vs-All Training ============ print('\nTraining One-vs-All Logistic Regression...\n') ova_lambda = 0.1 all_theta = one_vs_all(X, y, num_labels, ova_lambda) print('Program paused. Press enter to continue.\n') # pause_func() # ================ Part 3: Predict for One-Vs-All ================ pred = predict_one_vs_all(all_theta, X) + 1 print('\nTraining Set Accuracy: \n', np.mean((pred == y) * 100))