Example #1
0
 def forward(self, x: flow.Tensor) -> flow.Tensor:
     features = self.features(x)
     out = F.relu(features, inplace=True)
     out = F.adaptive_avg_pool2d(out, (1, 1))
     out = flow.flatten(out, 1)
     out = self.classifier(out)
     return out
Example #2
0
 def forward(self, x):
     out = swish(self.bn1(self.conv1(x)))
     out = self.layers(out)
     out = F.adaptive_avg_pool2d(out, 1)
     out = out.view(out.size(0), -1)
     dropout_rate = self.cfg['dropout_rate']
     if self.training and dropout_rate > 0:
         out = F.dropout(out, p=dropout_rate)
     out = self.linear(out)
     return out
Example #3
0
 def forward(self, x):
     out = F.relu(self.bn1(self.conv1(x)))
     out = self.layer1(out)
     out = self.layer2(out)
     out = self.layer3(out)
     out = self.layer4(out)
     out = F.adaptive_avg_pool2d(out, (1, 1))
     out = out.view(out.size(0), -1)
     out = self.linear(out)
     return out
Example #4
0
 def forward(self, x):
     out = F.adaptive_avg_pool2d(x, (1, 1))
     out = swish(self.se1(out))
     out = self.se2(out).sigmoid()
     out = x * out
     return out