def pack_padded_sequence( input: Tensor, lengths: Tensor, batch_first: bool = False, enforce_sorted: bool = True, ) -> PackedSequence: """The interface is consistent with PyTorch. The documentation is referenced from: https://pytorch.org/docs/stable/generated/torch.nn.utils.rnn.pack_padded_sequence.html. Packs a Tensor containing padded sequences of variable length. :attr:`input` can be of size ``T x B x *`` where `T` is the length of the longest sequence (equal to ``lengths[0]``), ``B`` is the batch size, and ``*`` is any number of dimensions (including 0). If ``batch_first`` is ``True``, ``B x T x *`` :attr:`input` is expected. For unsorted sequences, use `enforce_sorted = False`. If :attr:`enforce_sorted` is ``True``, the sequences should be sorted by length in a decreasing order, i.e. ``input[:,0]`` should be the longest sequence, and ``input[:,B-1]`` the shortest one. `enforce_sorted = True` is only necessary for ONNX export. Note: This function accepts any input that has at least two dimensions. You can apply it to pack the labels, and use the output of the RNN with them to compute the loss directly. A Tensor can be retrieved from a :class:`PackedSequence` object by accessing its ``.data`` attribute. Args: input (Tensor): padded batch of variable length sequences. lengths (Tensor or list(int)): list of sequence lengths of each batch element (must be on the CPU if provided as a tensor). batch_first (bool, optional): if ``True``, the input is expected in ``B x T x *`` format. enforce_sorted (bool, optional): if ``True``, the input is expected to contain sequences sorted by length in a decreasing order. If ``False``, the input will get sorted unconditionally. Default: ``True``. Returns: a :class:`PackedSequence` object """ lengths = flow.as_tensor(lengths, dtype=flow.int64) assert ( enforce_sorted == True ), "Only support enforce_sorted == True for now. Plesase Sort the input by length in a decreasing order." if enforce_sorted: sorted_indices = None else: lengths, sorted_indices = flow.sort(lengths, descending=True) sorted_indices = sorted_indices.to(input.device) batch_dim = 0 if batch_first else 1 input = input.index_select(batch_dim, sorted_indices) data, batch_sizes = flow._C.pack_padded_sequence(input, lengths, batch_first) return PackedSequence(data, batch_sizes, sorted_indices, None)
def _test_sort(test_case, data_shape, axis, descending, data_type, device): input = flow.tensor( np.random.randn(*data_shape), dtype=type_name_to_flow_type[data_type], device=flow.device(device), ) (of_values, of_indices) = flow.sort(input, dim=axis, descending=descending) np_input = -input.numpy() if descending else input.numpy() np_indices = np.argsort(np_input, axis=axis) np_out = np.sort(np_input, axis=axis) np_values = -np_out if descending else np_out test_case.assertTrue( np.array_equal(of_values.numpy().flatten(), np_values.flatten())) test_case.assertTrue( np.array_equal(of_indices.numpy().flatten(), np_indices.flatten()))
def lm_rescoring(self, preds, pred_lens): # preds [beam_size, lens] # preds_len [beam_size] if self.lm.model_type == "transformer_lm": log_probs = self.lm.predict(preds, last_frame=False) else: log_probs = [] hidden = None for t in range(preds.size(1)): log_prob, hidden = self.lm.predict(preds[:, t].unsqueeze(-1), hidden) log_probs.append(log_prob) log_probs = flow.cat(log_probs, dim=1) rescores = [] max_length = log_probs.size(1) vocab_size = log_probs.size(-1) for b in range(preds.size(0)): base_index = flow.arange(max_length, device=preds.device) bias_index = preds[b].reshape(-1) index = base_index * vocab_size + bias_index score = flow.index_select(log_probs[b].reshape(-1), dim=-1, index=index) label_len = min(int(pred_lens[b]), score.size(0)) score[label_len - 1:] = 0 rescores.append(flow.sum(score) / label_len) rescores = flow.tensor(rescores, dtype=flow.float32) _, indices = flow.sort(rescores, dim=-1, descending=True) sorted_preds = preds[indices] sorted_length = pred_lens[indices] return sorted_preds, sorted_length
def _sort(self, dim: int = -1, descending: bool = False): return flow.sort(self, dim, descending)
def SortJob(input: oft.ListNumpy.Placeholder( tuple([dim + 10 for dim in in_shape]), dtype=type_name_to_flow_type[data_type], )): with flow.scope.placement(device_type, "0:0"): return flow.sort(input, axis, direction)
def recognize(self, inputs, inputs_mask): cache = {"fronend": None, "encoder": None, "decoder": None, "lm": None} self.attn_weights = {} memory, memory_mask, _, enc_attn_weights = self.encode( inputs, inputs_mask) self.attn_weights["encoder"] = enc_attn_weights self.attn_weights["decoder"] = [] b, t, v = memory.size() beam_memory = (memory.unsqueeze(1).repeat( [1, self.beam_width, 1, 1]).view(b * self.beam_width, t, v)) beam_memory_mask = (memory_mask.unsqueeze(1).repeat( [1, self.beam_width, 1]).view(b * self.beam_width, t)) preds = (flow.ones( [b * self.beam_width, 1], dtype=flow.int64, device=memory.device) * BOS) scores = flow.tensor([0.0] + [-float("inf")] * (self.beam_width - 1), dtype=flow.float32) scores = scores.to(memory.device).repeat([b]).unsqueeze(1) ending_flag = flow.zeros_like(scores).to(dtype=flow.uint8) with flow.no_grad(): for _ in range(1, self.max_len + 1): preds, cache, scores, ending_flag = self.decode_step( preds, beam_memory, beam_memory_mask, cache, scores, ending_flag) # whether stop or not if ending_flag.sum() == b * self.beam_width: break scores = scores.view(b, self.beam_width) preds = preds.view(b, self.beam_width, -1) lengths = flow.sum(flow.ne(preds, EOS).float(), dim=-1) # length penalty if self.penalty: lp = flow.pow((self.lamda + lengths) / (self.lamda + 1), self.penalty) scores /= lp sorted_scores, offset_indices = flow.sort(scores, dim=-1, descending=True) base_indices = (flow.arange( b, dtype=flow.int64, device=offset_indices.device) * self.beam_width) base_indices = (base_indices.unsqueeze(1).repeat( [1, self.beam_width]).view(-1)) preds = preds.view(b * self.beam_width, -1) indices = offset_indices.view(-1) + base_indices # remove BOS sorted_preds = preds[indices].view(b, self.beam_width, -1) nbest_preds = sorted_preds[:, :min(self.beam_width, self.nbest), 1:] nbest_scores = sorted_scores[:, :min(self.beam_width, self.nbest)] return self.nbest_translate(nbest_preds), nbest_scores