Example #1
0
    def PartialFcJob(labels: oft.Numpy.Placeholder(
        (batch_size, ), dtype=type_name_to_flow_type[label_type])):
        with flow.scope.placement(device_type, "0:0"):
            x = flow.get_variable(
                "x-weight",
                shape=(num_classes, 128),
                dtype=flow.float,
                initializer=flow.random_uniform_initializer(minval=-10,
                                                            maxval=10),
                trainable=True,
            )
        with flow.scope.placement(device_type, "0:0-3"):
            lebels_distribute = flow.distribute.broadcast()
            weight_distribute = flow.distribute.split(0)
            (
                maped_label,
                sampled_label,
                sampled_weight,
            ) = flow.distributed_partial_fc_sample(
                weight=x.with_distribute(weight_distribute),
                label=labels.with_distribute(lebels_distribute),
                num_sample=num_sample,
            )
        with flow.scope.placement(device_type, "0:0"):
            sampled_weight = flow.identity(sampled_weight)
            loss = flow.math.square(sampled_weight)
            flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler(
                [], [1e-4]),
                               momentum=0).minimize(loss)

            flow.watch(x, test_global_storage.Setter("x"))
            flow.watch_diff(x, test_global_storage.Setter("x_diff"))
            flow.watch_diff(sampled_weight,
                            test_global_storage.Setter("sampled_weight_diff"))
        return x, maped_label, sampled_label, sampled_weight
Example #2
0
    def test_job(x: oft.Numpy.Placeholder(input_shape, dtype=flow.float32),):
        v = flow.get_variable(
            name="v",
            shape=(1,),
            dtype=flow.float32,
            initializer=flow.zeros_initializer(),
        )

        x = x + v

        x1 = flow.identity(x)
        x2 = flow.identity(x)

        flow.watch_diff(x1, test_global_storage.Setter("x1_diff"))
        flow.watch_diff(x2, test_global_storage.Setter("x2_diff"))

        x1 = flow.cast(x1, data_type)
        x2 = flow.cast(x2, data_type)

        y1 = flow.layers.batch_normalization_relu(x1, axis=axis, name="BN1")
        y2 = flow.math.relu(flow.layers.batch_normalization(x2, axis=axis, name="BN2"))

        y1 = flow.cast(y1, flow.float32)
        y2 = flow.cast(y2, flow.float32)

        flow.watch(y1, test_global_storage.Setter("y1"))
        flow.watch(y2, test_global_storage.Setter("y2"))

        loss = flow.math.reduce_mean(y1 + y2)
        flow.optimizer.SGD(
            flow.optimizer.PiecewiseConstantScheduler([], [0.001]), momentum=0
        ).minimize(flow.math.reduce_sum(loss))

        return loss
Example #3
0
    def UpsampleJob():
        with flow.scope.placement(device_type, "0:0"):
            x = flow.get_variable(
                "input",
                shape=input_shape,
                dtype=type_name_to_flow_type[dtype],
                initializer=flow.random_uniform_initializer(minval=2, maxval=5),
                trainable=True,
            )

            loss = flow.layers.upsample_2d(
                x,
                size=size,
                data_format=data_format,
                interpolation=interpolation,
                align_corners=align_corners,
            )
            flow.optimizer.SGD(
                flow.optimizer.PiecewiseConstantScheduler([], [1e-4]), momentum=0
            ).minimize(loss)

            flow.watch(x, test_global_storage.Setter("x"))
            flow.watch_diff(x, test_global_storage.Setter("x_diff"))
            flow.watch(loss, test_global_storage.Setter("loss"))
            flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))

            return loss
Example #4
0
    def SoftmaxJob():
        with flow.scope.placement(device_type, "0:0"):
            x = flow.get_variable(
                "x",
                shape=x_shape,
                dtype=dtype,
                initializer=flow.random_uniform_initializer(minval=-0.1,
                                                            maxval=0.1),
                trainable=True,
            )
            if data_type == "float16":
                loss = flow.cast(
                    flow.nn.softmax(flow.cast(x, dtype=flow.float16),
                                    axis=axis),
                    dtype=flow.float,
                )
            else:
                loss = flow.nn.softmax(x, axis=axis)
            flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler(
                [], [1e-4]),
                               momentum=0).minimize(loss)

            flow.watch(x, test_global_storage.Setter("x"))
            flow.watch_diff(x, test_global_storage.Setter("x_diff"))
            flow.watch(loss, test_global_storage.Setter("loss"))
            flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))

            return loss
Example #5
0
    def SparseSoftmaxCrossEntropyWithLogitsJob(labels: oft.Numpy.Placeholder(
        (batch_size, ), dtype=type_name_to_flow_type[label_type])):
        with flow.scope.placement(device_type, "0:0"):
            x = flow.get_variable(
                "x",
                shape=(batch_size, num_classes),
                dtype=type_name_to_flow_type[data_type],
                initializer=flow.random_uniform_initializer(minval=-10,
                                                            maxval=10),
                trainable=True,
            )

        with flow.scope.placement(device_type, "0:0-3"):
            lebels_distribute = flow.distribute.broadcast()
            logits_distribute = flow.distribute.split(len(x.shape) - 1)
            loss = flow.nn.sparse_softmax_cross_entropy_with_logits(
                labels=labels.with_distribute(lebels_distribute),
                logits=x.with_distribute(logits_distribute),
            )
            loss = flow.math.square(loss)

        with flow.scope.placement(device_type, "0:0"):
            loss = flow.identity(loss)
            flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler(
                [], [1e-4]),
                               momentum=0).minimize(loss)

            flow.watch(x, test_global_storage.Setter("x"))
            flow.watch_diff(x, test_global_storage.Setter("x_diff"))
            flow.watch(loss, test_global_storage.Setter("loss"))
            flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))
            return loss
Example #6
0
    def TestMultiInputJob():
        with flow.scope.placement("gpu", "0:0"):
            x1 = flow.get_variable(
                "x1",
                shape=shape,
                dtype=flow.float,
                initializer=flow.random_uniform_initializer(minval=-10,
                                                            maxval=10),
                trainable=True,
            )
            x2 = flow.get_variable(
                "x2",
                shape=shape,
                dtype=flow.float,
                initializer=flow.random_uniform_initializer(minval=-10,
                                                            maxval=10),
                trainable=True,
            )
            loss = TestMultiInput(x1, x2)
            flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler(
                [], [1e-4]),
                               momentum=0).minimize(loss)

            flow.watch(x1, test_global_storage.Setter("x1"))
            flow.watch_diff(x1, test_global_storage.Setter("x1_diff"))
            flow.watch(x2, test_global_storage.Setter("x2"))
            flow.watch_diff(x2, test_global_storage.Setter("x2_diff"))
            return loss
Example #7
0
    def test_masked_fill_fw_bw_job(
            x: oft.Numpy.Placeholder(x_shape, dtype=flow_type),
            mask: oft.Numpy.Placeholder(mask_shape, dtype=flow_type),
    ):
        with flow.scope.placement(device, "0:0"):
            y = flow.get_variable(
                name="vx",
                shape=(1, ),
                dtype=flow.float,
                initializer=flow.zeros_initializer(),
            )
            x += flow.cast(y, flow_type)
            mask = flow.cast(mask, dtype=flow.int8)
            if type_name == "float16":
                out = flow.cast(
                    flow.masked_fill(flow.cast(x, flow.float16), mask, value),
                    flow.float,
                )
            else:
                out = flow.masked_fill(x, mask, value)
            flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler(
                [], [1e-4]),
                               momentum=0).minimize(out)

            flow.watch(x, test_global_storage.Setter("x"))
            flow.watch_diff(x, test_global_storage.Setter("x_diff"))
            flow.watch(out, test_global_storage.Setter("out"))
            flow.watch_diff(out, test_global_storage.Setter("out_diff"))
            return out
Example #8
0
    def diag_job(
        input_tensor: tp.Numpy.Placeholder(shape=(input_shape),
                                           dtype=flow.float),
    ) -> tp.Numpy:
        input_var = flow.get_variable(
            "input_tensor",
            shape=(input_shape),
            dtype=flow.float,
            initializer=flow.zeros_initializer(),
            trainable=True,
        )

        input_tensor = input_tensor + input_var
        input_tensor = flow.cast_to_current_logical_view(input_tensor)
        input_tensor = flow.cast(input_tensor, type_name_to_flow_type[dtype])
        output = flow.diag(input_tensor, dim)
        if (output.dtype == flow.int64 or output.dtype == flow.int8
                or output.dtype == flow.int32):
            output = flow.cast(output, flow.float)
        flow.optimizer.Adam(
            flow.optimizer.PiecewiseConstantScheduler([],
                                                      [1e-4])).minimize(output)

        flow.watch(input_tensor, test_global_storage.Setter("x"))
        flow.watch_diff(input_tensor, test_global_storage.Setter("x_diff"))
        flow.watch(output, test_global_storage.Setter("output"))
        flow.watch_diff(output, test_global_storage.Setter("output_diff"))

        return output
Example #9
0
    def SparseSoftmaxCrossEntropyWithLogitsJob(labels: oft.Numpy.Placeholder(
        (batch_size, ), dtype=type_name_to_flow_type[label_type])):
        with flow.scope.placement(device_type, "0:0"):
            x = flow.get_variable(
                "x",
                shape=(batch_size, num_classes),
                dtype=type_name_to_flow_type[data_type],
                initializer=flow.random_uniform_initializer(minval=-10,
                                                            maxval=10),
                trainable=True,
            )
            prediction = flow.nn.softmax(logits=x)
        with flow.scope.placement(device_type, "0:0-3"):
            lebels_distribute = flow.distribute.broadcast()
            prediction_distribute = flow.distribute.split(
                len(prediction.shape) - 1)
            loss = flow.nn.sparse_cross_entropy(
                labels=labels.with_distribute(lebels_distribute),
                prediction=prediction.with_distribute(prediction_distribute),
            )
        with flow.scope.placement(device_type, "0:0"):
            loss = flow.math.square(loss)
            flow.losses.add_loss(loss)

            flow.watch(x, test_global_storage.Setter("x"))
            flow.watch_diff(x, test_global_storage.Setter("x_diff"))
            flow.watch(loss, test_global_storage.Setter("loss"))
            flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))
        return loss
Example #10
0
    def DropoutJob():
        with flow.scope.placement(device_type, "0:0"):
            x = flow.get_variable(
                "x",
                shape=x_shape,
                dtype=dtype,
                initializer=flow.random_uniform_initializer(minval=-1,
                                                            maxval=1),
                trainable=True,
            )
            if data_type == "float16":
                x = flow.cast(flow.cast(x, flow.float16), dtype)
                of_out = flow.cast(
                    flow.nn.dropout(flow.cast(x, flow.float16),
                                    rate=rate,
                                    seed=seed,
                                    name="dropout"),
                    dtype,
                )
            else:
                of_out = flow.nn.dropout(x,
                                         rate=rate,
                                         seed=seed,
                                         name="dropout")
            loss = flow.math.square(of_out)
            flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler(
                [], [1e-4]),
                               momentum=0).minimize(loss)

            flow.watch(x, test_global_storage.Setter("x"))
            flow.watch_diff(x, test_global_storage.Setter("x_diff"))
            flow.watch(of_out, test_global_storage.Setter("out"))
            flow.watch_diff(of_out, test_global_storage.Setter("out_diff"))

            return loss
Example #11
0
    def test_fused_scale_tril_fw_bw_job(
            x: oft.Numpy.Placeholder(shape, dtype=flow_type), ):
        with flow.scope.placement(device, "0:0"):
            x_var = flow.get_variable(
                name="xv",
                shape=(1, ),
                dtype=flow.float,
                initializer=flow.zeros_initializer(),
            )
            x += flow.cast(x_var, dtype=flow_type)
            if type_name == "float16":
                out = flow.cast(
                    flow.math.fused_scale_tril(flow.cast(x, flow.float16),
                                               diagonal,
                                               scale=scale),
                    flow.float,
                )
            else:
                out = flow.math.fused_scale_tril(x, diagonal, scale=scale)
            flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler(
                [], [1e-4]),
                               momentum=0).minimize(out)

            flow.watch(x, test_global_storage.Setter("x"))
            flow.watch_diff(x, test_global_storage.Setter("x_diff"))
            flow.watch(out, test_global_storage.Setter("out"))
            flow.watch_diff(out, test_global_storage.Setter("out_diff"))
            return out
Example #12
0
    def SplitLikeJob(x: oft.Numpy.Placeholder(x_shape, dtype=flow.float)):
        v = flow.get_variable(
            "x",
            shape=x_shape,
            dtype=flow.float,
            initializer=flow.constant_initializer(0),
            trainable=True,
        )
        x += v

        like0 = flow.constant(0, dtype=flow.float, shape=like0_shape)
        like1 = flow.constant(0, dtype=flow.float, shape=like1_shape)

        with flow.scope.placement("gpu", "0:0"):
            y0, y1 = split_like(x, [like0, like1], "split_like")
            loss = y0
        flow.optimizer.SGD(
            flow.optimizer.PiecewiseConstantScheduler([], [1e-4]), momentum=0
        ).minimize(loss)

        flow.watch(x, test_global_storage.Setter("x"))
        flow.watch_diff(x, test_global_storage.Setter("x_diff"))
        flow.watch(loss, test_global_storage.Setter("loss"))
        flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))

        return y0, y1
Example #13
0
 def Matmul(
     x: tp.Numpy.Placeholder((4, 4), dtype=flow.float32, batch_axis=None),
     y: tp.Numpy.Placeholder((4, 4), dtype=flow.float32, batch_axis=1),
 ) -> tp.Numpy:
     s = flow.matmul(x, y)  # model parallel
     flow.watch(s, Watch)
     z = flow.matmul(s, x)  # data parallel
     return z
 def slice_fn():
     with flow.scope.placement(device_tag, "0:0-{}".format(device_num - 1)):
         var = flow.get_variable(
             name="var",
             shape=var_shape,
             dtype=flow_dtype,
             initializer=flow.random_uniform_initializer(-10, 10, dtype=flow_dtype),
             distribute=flow.distribute.split(split_axis),
         )
         flow.watch(var, test_global_storage.Setter("var"))
         ret = flow.experimental.logical_slice(var, slice_tuples)
         return ret
Example #15
0
    def MatmulJob():
        with flow.scope.placement(device_type, "0:0"):
            a = flow.get_variable(
                "a",
                shape=a_shape,
                dtype=dtype,
                initializer=flow.random_uniform_initializer(minval=0, maxval=1),
                trainable=True,
            )
            b = flow.get_variable(
                "b",
                shape=b_shape,
                dtype=dtype,
                initializer=flow.random_uniform_initializer(minval=0, maxval=1),
                trainable=True,
            )
            if data_type == "float16":
                out = flow.matmul(
                    flow.cast(a, dtype=flow.float16),
                    flow.cast(b, dtype=flow.float16),
                    transpose_a,
                    transpose_b,
                    alpha,
                )
                c = flow.get_variable(
                    "c",
                    shape=out.shape,
                    dtype=dtype,
                    initializer=flow.random_uniform_initializer(minval=-1, maxval=1),
                    trainable=True,
                )
                loss = flow.cast(
                    out + flow.cast(c, dtype=flow.float16), dtype=flow.float
                )
            else:
                out = flow.matmul(a, b, transpose_a, transpose_b, alpha)
                c = flow.get_variable(
                    "c",
                    shape=out.shape,
                    dtype=dtype,
                    initializer=flow.random_uniform_initializer(minval=-1, maxval=1),
                    trainable=True,
                )
                loss = out + c

            flow.optimizer.SGD(
                flow.optimizer.PiecewiseConstantScheduler([], [1e-4]), momentum=0
            ).minimize(loss)

            flow.watch(a, test_global_storage.Setter("a"))
            flow.watch_diff(a, test_global_storage.Setter("a_diff"))
            flow.watch(b, test_global_storage.Setter("b"))
            flow.watch_diff(b, test_global_storage.Setter("b_diff"))
            flow.watch(c, test_global_storage.Setter("c"))
            flow.watch_diff(c, test_global_storage.Setter("c_diff"))
            flow.watch(loss, test_global_storage.Setter("loss"))
            flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))

            return loss
 def ReduceSumJob():
     with flow.scope.placement(device_type, "0:0"):
         x = flow.get_variable(
             "in",
             shape=input_shape,
             dtype=flow.float,
             initializer=flow.random_uniform_initializer(minval=2,
                                                         maxval=5),
             trainable=True,
         )
         loss = flow.math.reduce_sum(x, axis=axis, keepdims=keepdims)
         flow.losses.add_loss(loss)
         flow.watch(x, test_global_storage.Setter("x"))
         flow.watch_diff(x, test_global_storage.Setter("x_diff"))
         flow.watch(loss, test_global_storage.Setter("loss"))
         flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))
         return loss
Example #17
0
    def CastJob():
        with flow.scope.placement(device_type, "0:0"):
            x = flow.get_variable(
                "in",
                shape=input_shape,
                dtype=type_name_to_flow_type[dtype],
                initializer=flow.random_uniform_initializer(),
                trainable=True,
            )

            loss = flow.cast(x, dtype=flow.float)
            flow.losses.add_loss(loss)
            flow.watch(x, test_global_storage.Setter("x"))
            flow.watch_diff(x, test_global_storage.Setter("x_diff"))
            flow.watch(loss, test_global_storage.Setter("loss"))
            flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))
            return loss
    def ReduceMaxJob(x: oft.Numpy.Placeholder(input_shape, dtype=flow.float)):
        with flow.scope.placement(device_type, "0:0"):
            x += flow.get_variable(
                name="v1",
                shape=input_shape,
                dtype=flow.float,
                initializer=flow.zeros_initializer(),
            )
            loss = flow.math.reduce_max(x, axis=axis, keepdims=keepdims)
            loss = flow.identity(loss)
            flow.losses.add_loss(loss)
            flow.watch(x, test_global_storage.Setter("x"))
            flow.watch_diff(x, test_global_storage.Setter("x_diff"))
            flow.watch(loss, test_global_storage.Setter("loss"))
            flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))

            return loss
Example #19
0
 def ReduceSumJob():
     with flow.scope.placement(device_type, "0:0"):
         x = flow.get_variable(
             "in",
             shape=input_shape,
             dtype=flow.float,
             initializer=flow.random_uniform_initializer(minval=2, maxval=5),
             trainable=True,
         )
         loss = flow.math.reduce_sum(x, axis=axis, keepdims=keepdims)
         flow.optimizer.SGD(
             flow.optimizer.PiecewiseConstantScheduler([], [1e-4]), momentum=0
         ).minimize(loss)
         flow.watch(x, test_global_storage.Setter("x"))
         flow.watch_diff(x, test_global_storage.Setter("x_diff"))
         flow.watch(loss, test_global_storage.Setter("loss"))
         flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))
         return loss
    def LeakyReluJob():
        with flow.scope.placement(device_type, "0:0"):
            x = flow.get_variable(
                "x",
                shape=x_shape,
                dtype=type_name_to_flow_type[data_type],
                initializer=flow.random_uniform_initializer(minval=-10, maxval=10),
                trainable=True,
            )
            loss = flow.nn.leaky_relu(x, alpha=alpha)
            flow.losses.add_loss(loss)

            flow.watch(x, test_global_storage.Setter("x"))
            flow.watch_diff(x, test_global_storage.Setter("x_diff"))
            flow.watch(loss, test_global_storage.Setter("loss"))
            flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))

            return loss
    def L2NormalizeJob():
        with flow.scope.placement(device_type, "0:0"):
            x = flow.get_variable(
                "x",
                shape=x_shape,
                dtype=type_name_to_flow_type[data_type],
                initializer=flow.random_uniform_initializer(minval=-10, maxval=10),
                trainable=True,
            )
            loss = flow.math.l2_normalize(x, axis=axis, epsilon=epsilon)
            flow.losses.add_loss(loss)

            flow.watch(x, test_global_storage.Setter("x"))
            flow.watch_diff(x, test_global_storage.Setter("x_diff"))
            flow.watch(loss, test_global_storage.Setter("loss"))
            flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))

            return loss
Example #22
0
    def SquareJob():
        with flow.scope.placement(device_type, "0:0"):
            x = flow.get_variable(
                "x",
                shape=x_shape,
                dtype=flow.float,
                initializer=flow.random_uniform_initializer(minval=-10, maxval=10),
                trainable=True,
            )
            loss = flow.math.square(x)
            flow.losses.add_loss(loss)

            flow.watch(x, test_global_storage.Setter("x"))
            flow.watch_diff(x, test_global_storage.Setter("x_diff"))
            flow.watch(loss, test_global_storage.Setter("loss"))
            flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))

            return loss
    def test_job(
            x: oft.Numpy.Placeholder(input_shape, dtype=flow.float32),
            labels: oft.Numpy.Placeholder(label_shape, dtype=flow.int32),
    ):
        with flow.scope.placement("gpu", "0:0"):
            v = flow.get_variable(
                name="v",
                shape=(1, ),
                dtype=flow.float32,
                initializer=flow.zeros_initializer(),
            )
            x = x + v

            x1 = flow.identity(x)
            x2 = flow.identity(x)

            flow.watch_diff(x1, test_global_storage.Setter("x1_diff"))
            flow.watch_diff(x2, test_global_storage.Setter("x2_diff"))

            x1 = flow.cast(x1, data_type)
            x2 = flow.cast(x2, data_type)

        with flow.scope.placement("gpu", "0:0-3"):
            y1 = (flow.combined_margin_loss(
                x1.with_distribute(flow.distribute.split(1)),
                labels.with_distribute(flow.distribute.broadcast()),
                m1,
                m2,
                m3,
            ) * s)
            y2 = margin_loss(m1, m2, m3, s, x2, labels)

        with flow.scope.placement("gpu", "0:0"):
            y1 = flow.cast(y1, flow.float)
            y2 = flow.cast(y2, flow.float)

            flow.watch(y1, test_global_storage.Setter("y1"))
            flow.watch(y2, test_global_storage.Setter("y2"))
            loss = y1 + y2
            flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler(
                [], [0.001]),
                               momentum=0).minimize(flow.math.reduce_sum(loss))

        return loss
Example #24
0
    def CastJob():
        with flow.scope.placement(device_type, "0:0"):
            x = flow.get_variable(
                "in",
                shape=input_shape,
                dtype=type_name_to_flow_type[dtype],
                initializer=flow.random_uniform_initializer(),
                trainable=True,
            )

            loss = flow.cast(x, dtype=flow.float)
            flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler(
                [], [1e-4]),
                               momentum=0).minimize(loss)
            flow.watch(x, test_global_storage.Setter("x"))
            flow.watch_diff(x, test_global_storage.Setter("x_diff"))
            flow.watch(loss, test_global_storage.Setter("loss"))
            flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))
            return loss
Example #25
0
    def FlattenJob() -> flow.typing.Numpy:
        with flow.scope.placement(device_type, "0:0"):
            x = flow.get_variable(
                "in",
                shape=input_shape,
                dtype=flow.float,
                initializer=flow.random_uniform_initializer(minval=2, maxval=5),
                trainable=True,
            )

            loss = flow.flatten(x, start_dim=start_dim, end_dim=end_dim)
            flow.optimizer.SGD(
                flow.optimizer.PiecewiseConstantScheduler([], [1e-4]), momentum=0
            ).minimize(loss)

            flow.watch(x, test_global_storage.Setter("x"))
            flow.watch_diff(x, test_global_storage.Setter("x_diff"))

            return loss
Example #26
0
    def TransposeJob():
        with flow.scope.placement(device_type, "0:0"):
            x = flow.get_variable(
                "input",
                shape=input_shape,
                dtype=flow.float,
                initializer=flow.random_uniform_initializer(minval=2, maxval=5),
                trainable=True,
            )

            loss = flow.transpose(x, perm)
            flow.losses.add_loss(loss)

            flow.watch(x, test_global_storage.Setter("x"))
            flow.watch_diff(x, test_global_storage.Setter("x_diff"))
            flow.watch(loss, test_global_storage.Setter("loss"))
            flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))

            return loss
    def ActivationJob():
        with flow.scope.placement(device_type, "0:0"):
            x = flow.get_variable(
                "x",
                shape=shape,
                dtype=data_type,
                initializer=flow.random_uniform_initializer(minval=-10,
                                                            maxval=10),
                trainable=True,
            )
            loss = of_activation_map[activation_type](x)
            flow.losses.add_loss(loss)

            flow.watch(x, test_global_storage.Setter("x"))
            flow.watch_diff(x, test_global_storage.Setter("x_diff"))
            flow.watch(loss, test_global_storage.Setter("loss"))
            flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))

            return loss
Example #28
0
    def ReduceMinJob(x: oft.Numpy.Placeholder(input_shape, dtype=flow.float)):
        with flow.scope.placement(device_type, "0:0"):
            x += flow.get_variable(
                name="v1",
                shape=input_shape,
                dtype=flow.float,
                initializer=flow.zeros_initializer(),
            )
            loss = flow.math.reduce_min(x, axis=axis, keepdims=keepdims)
            loss = flow.identity(loss)
            flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler(
                [], [1e-4]),
                               momentum=0).minimize(loss)
            flow.watch(x, test_global_storage.Setter("x"))
            flow.watch_diff(x, test_global_storage.Setter("x_diff"))
            flow.watch(loss, test_global_storage.Setter("loss"))
            flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))

            return loss
    def SoftmaxCrossEntropyWithLogitsJob(labels: oft.Numpy.Placeholder(
        shape, dtype=type_name_to_flow_type[data_type])):
        with flow.scope.placement(device_type, "0:0"):
            x = flow.get_variable(
                "x",
                shape=shape,
                dtype=type_name_to_flow_type[data_type],
                initializer=flow.random_uniform_initializer(minval=-10,
                                                            maxval=10),
                trainable=True,
            )
            loss = flow.nn.softmax_cross_entropy_with_logits(labels=labels,
                                                             logits=x)
            flow.losses.add_loss(loss)

            flow.watch(x, test_global_storage.Setter("x"))
            flow.watch_diff(x, test_global_storage.Setter("x_diff"))
            flow.watch(loss, test_global_storage.Setter("loss"))
            flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))
        return loss
    def two_stage_reduce_job(x: oft.Numpy.Placeholder((4, 20, 20, 20))):
        with flow.scope.placement(device_type, "0:0"):
            x += flow.get_variable(
                name="v1",
                shape=(1,),
                dtype=flow.float,
                initializer=flow.zeros_initializer(),
            )
        with flow.scope.placement(device_type, "0:0-3"):
            loss = flow_func(
                x.with_distribute(flow.distribute.split(split_axis)),
                axis=axis,
                keepdims=True,
            )
            loss = flow.identity(loss)
            flow.losses.add_loss(loss)

            flow.watch(x, test_global_storage.Setter("x"))
            flow.watch_diff(x, test_global_storage.Setter("x_diff"))
            return loss