def make_bases2s_data(src_file, stride=1, concat=1, prev_context=0, fp16=False, num_workers=1, asr_format="h5", output_format="raw"): print('[INFO] Processing %s ...' % src_file) binarized_src = SpeechBinarizer.binarize_file(src_file, input_format=asr_format, output_format=output_format, concat=concat, stride=stride, fp16=fp16, prev_context=prev_context, num_workers=num_workers) src = binarized_src['data'] src_sizes = binarized_src['sizes'] return src, src_sizes
def make_asr_data(src_file, tgt_file, tgt_dicts, tokenizer, max_src_length=64, max_tgt_length=64, add_bos=True, data_type='int64', num_workers=1, verbose=False, input_type='word', stride=1, concat=4, prev_context=0, fp16=False, reshape=True, asr_format="h5", output_format="raw"): src, tgt = [], [] src_sizes = [] tgt_sizes = [] count, ignored = 0, 0 n_unk_words = 0 print('[INFO] Processing %s ...' % src_file) binarized_src = SpeechBinarizer.binarize_file(src_file, input_format=asr_format, output_format=output_format, concat=concat, stride=stride, fp16=fp16, prev_context=prev_context, num_workers=num_workers) src = binarized_src['data'] src_sizes = binarized_src['sizes'] if add_bos: tgt_bos_word = onmt.constants.BOS_WORD else: tgt_bos_word = None print("[INFO] Binarizing file %s ..." % tgt_file) binarized_tgt = Binarizer.binarize_file(tgt_file, tgt_dicts, tokenizer, bos_word=tgt_bos_word, eos_word=onmt.constants.EOS_WORD, data_type=data_type, num_workers=num_workers, verbose=verbose) tgt = binarized_tgt['data'] tgt_sizes = binarized_tgt['sizes'] ignored = 0 if len(src_sizes) != len(tgt_sizes): print("Warning: data size mismatched.") print(('Prepared %d sentences ' + '(%d ignored due to length == 0 or src len > %d or tgt len > %d)') % (len(src), ignored, max_src_length, max_tgt_length)) return src, tgt, src_sizes, tgt_sizes