Example #1
0
def main():

    if not opt.multi_dataset:
        if opt.data_format in ['bin', 'raw']:
            start = time.time()

            if opt.data.endswith(".train.pt"):
                print("Loading data from '%s'" % opt.data)
                dataset = torch.load(opt.data)
            else:
                print("Loading data from %s" % opt.data + ".train.pt")
                dataset = torch.load(opt.data + ".train.pt")

            elapse = str(datetime.timedelta(seconds=int(time.time() - start)))
            print("Done after %s" % elapse)

            dicts = dataset['dicts']

            # For backward compatibility
            train_dict = defaultdict(lambda: None, dataset['train'])
            valid_dict = defaultdict(lambda: None, dataset['valid'])

            if train_dict['src_lang'] is not None:
                assert 'langs' in dicts
                train_src_langs = train_dict['src_lang']
                train_tgt_langs = train_dict['tgt_lang']
            else:
                # allocate new languages
                dicts['langs'] = {'src': 0, 'tgt': 1}
                train_src_langs = list()
                train_tgt_langs = list()
                # Allocation one for the bilingual case
                train_src_langs.append(torch.Tensor([dicts['langs']['src']]))
                train_tgt_langs.append(torch.Tensor([dicts['langs']['tgt']]))

            if not opt.streaming:
                train_data = onmt.Dataset(
                    numpy_to_torch(train_dict['src']),
                    numpy_to_torch(train_dict['tgt']),
                    train_dict['src_sizes'],
                    train_dict['tgt_sizes'],
                    train_src_langs,
                    train_tgt_langs,
                    batch_size_words=opt.batch_size_words,
                    data_type=dataset.get("type", "text"),
                    sorting=True,
                    batch_size_sents=opt.batch_size_sents,
                    multiplier=opt.batch_size_multiplier,
                    augment=opt.augment_speech,
                    upsampling=opt.upsampling,
                    num_split=len(opt.gpus))
            else:
                train_data = onmt.StreamDataset(
                    train_dict['src'],
                    train_dict['tgt'],
                    train_src_langs,
                    train_tgt_langs,
                    batch_size_words=opt.batch_size_words,
                    data_type=dataset.get("type", "text"),
                    sorting=True,
                    batch_size_sents=opt.batch_size_sents,
                    multiplier=opt.batch_size_multiplier,
                    augment=opt.augment_speech,
                    upsampling=opt.upsampling)

            if valid_dict['src_lang'] is not None:
                assert 'langs' in dicts
                valid_src_langs = valid_dict['src_lang']
                valid_tgt_langs = valid_dict['tgt_lang']
            else:
                # allocate new languages
                valid_src_langs = list()
                valid_tgt_langs = list()

                # Allocation one for the bilingual case
                valid_src_langs.append(torch.Tensor([dicts['langs']['src']]))
                valid_tgt_langs.append(torch.Tensor([dicts['langs']['tgt']]))

            if not opt.streaming:
                valid_data = onmt.Dataset(
                    numpy_to_torch(valid_dict['src']),
                    numpy_to_torch(valid_dict['tgt']),
                    valid_dict['src_sizes'],
                    valid_dict['tgt_sizes'],
                    valid_src_langs,
                    valid_tgt_langs,
                    batch_size_words=opt.batch_size_words,
                    data_type=dataset.get("type", "text"),
                    sorting=True,
                    batch_size_sents=opt.batch_size_sents,
                    upsampling=opt.upsampling,
                    num_split=len(opt.gpus))
            else:
                valid_data = onmt.StreamDataset(
                    numpy_to_torch(valid_dict['src']),
                    numpy_to_torch(valid_dict['tgt']),
                    valid_src_langs,
                    valid_tgt_langs,
                    batch_size_words=opt.batch_size_words,
                    data_type=dataset.get("type", "text"),
                    sorting=True,
                    batch_size_sents=opt.batch_size_sents,
                    upsampling=opt.upsampling)

            print(' * number of training sentences. %d' %
                  len(dataset['train']['src']))
            print(' * maximum batch size (words per batch). %d' %
                  opt.batch_size_words)

        elif opt.data_format in ['scp', 'scpmem', 'mmem']:
            print("Loading memory mapped data files ....")
            start = time.time()
            from onmt.data.mmap_indexed_dataset import MMapIndexedDataset
            from onmt.data.scp_dataset import SCPIndexDataset

            dicts = torch.load(opt.data + ".dict.pt")
            if opt.data_format in ['scp', 'scpmem']:
                audio_data = torch.load(opt.data + ".scp_path.pt")

            # allocate languages if not
            if 'langs' not in dicts:
                dicts['langs'] = {'src': 0, 'tgt': 1}
            else:
                print(dicts['langs'])

            train_path = opt.data + '.train'
            if opt.data_format in ['scp', 'scpmem']:
                train_src = SCPIndexDataset(audio_data['train'],
                                            concat=opt.concat)
            else:
                train_src = MMapIndexedDataset(train_path + '.src')

            train_tgt = MMapIndexedDataset(train_path + '.tgt')

            # check the lang files if they exist (in the case of multi-lingual models)
            if os.path.exists(train_path + '.src_lang.bin'):
                assert 'langs' in dicts
                train_src_langs = MMapIndexedDataset(train_path + '.src_lang')
                train_tgt_langs = MMapIndexedDataset(train_path + '.tgt_lang')
            else:
                train_src_langs = list()
                train_tgt_langs = list()
                # Allocate a Tensor(1) for the bilingual case
                train_src_langs.append(torch.Tensor([dicts['langs']['src']]))
                train_tgt_langs.append(torch.Tensor([dicts['langs']['tgt']]))

            # check the length files if they exist
            if os.path.exists(train_path + '.src_sizes.npy'):
                train_src_sizes = np.load(train_path + '.src_sizes.npy')
                train_tgt_sizes = np.load(train_path + '.tgt_sizes.npy')
            else:
                train_src_sizes, train_tgt_sizes = None, None

            if opt.encoder_type == 'audio':
                data_type = 'audio'
            else:
                data_type = 'text'

            if not opt.streaming:
                train_data = onmt.Dataset(
                    train_src,
                    train_tgt,
                    train_src_sizes,
                    train_tgt_sizes,
                    train_src_langs,
                    train_tgt_langs,
                    batch_size_words=opt.batch_size_words,
                    data_type=data_type,
                    sorting=True,
                    batch_size_sents=opt.batch_size_sents,
                    multiplier=opt.batch_size_multiplier,
                    src_align_right=opt.src_align_right,
                    augment=opt.augment_speech,
                    upsampling=opt.upsampling,
                    cleaning=True,
                    verbose=True,
                    num_split=len(opt.gpus))
            else:
                train_data = onmt.StreamDataset(
                    train_src,
                    train_tgt,
                    train_src_langs,
                    train_tgt_langs,
                    batch_size_words=opt.batch_size_words,
                    data_type=data_type,
                    sorting=False,
                    batch_size_sents=opt.batch_size_sents,
                    multiplier=opt.batch_size_multiplier,
                    upsampling=opt.upsampling)

            valid_path = opt.data + '.valid'
            if opt.data_format in ['scp', 'scpmem']:
                valid_src = SCPIndexDataset(audio_data['valid'],
                                            concat=opt.concat)
            else:
                valid_src = MMapIndexedDataset(valid_path + '.src')
            valid_tgt = MMapIndexedDataset(valid_path + '.tgt')

            if os.path.exists(valid_path + '.src_lang.bin'):
                assert 'langs' in dicts
                valid_src_langs = MMapIndexedDataset(valid_path + '.src_lang')
                valid_tgt_langs = MMapIndexedDataset(valid_path + '.tgt_lang')
            else:
                valid_src_langs = list()
                valid_tgt_langs = list()

                # Allocation one for the bilingual case
                valid_src_langs.append(torch.Tensor([dicts['langs']['src']]))
                valid_tgt_langs.append(torch.Tensor([dicts['langs']['tgt']]))

            # check the length files if they exist
            if os.path.exists(valid_path + '.src_sizes.npy'):
                valid_src_sizes = np.load(valid_path + '.src_sizes.npy')
                valid_tgt_sizes = np.load(valid_path + '.tgt_sizes.npy')
            else:
                valid_src_sizes, valid_tgt_sizes = None, None

            if not opt.streaming:
                valid_data = onmt.Dataset(
                    valid_src,
                    valid_tgt,
                    valid_src_sizes,
                    valid_tgt_sizes,
                    valid_src_langs,
                    valid_tgt_langs,
                    batch_size_words=opt.batch_size_words,
                    data_type=data_type,
                    sorting=True,
                    batch_size_sents=opt.batch_size_sents,
                    src_align_right=opt.src_align_right,
                    cleaning=True,
                    verbose=True,
                    debug=True,
                    num_split=len(opt.gpus))
            else:
                # for validation data, we have to go through sentences (very slow but to ensure correctness)
                valid_data = onmt.StreamDataset(
                    valid_src,
                    valid_tgt,
                    valid_src_langs,
                    valid_tgt_langs,
                    batch_size_words=opt.batch_size_words,
                    data_type=data_type,
                    sorting=True,
                    batch_size_sents=opt.batch_size_sents)

            elapse = str(datetime.timedelta(seconds=int(time.time() - start)))
            print("Done after %s" % elapse)

        else:
            raise NotImplementedError

        print(' * number of sentences in training data: %d' %
              train_data.size())
        print(' * number of sentences in validation data: %d' %
              valid_data.size())

    else:
        print("[INFO] Reading multiple dataset ...")
        # raise NotImplementedError

        dicts = torch.load(opt.data + ".dict.pt")

        root_dir = os.path.dirname(opt.data)

        print("Loading training data ...")

        train_dirs, valid_dirs = dict(), dict()

        # scan the data directory to find the training data
        for dir_ in os.listdir(root_dir):
            if os.path.isdir(os.path.join(root_dir, dir_)):
                if str(dir_).startswith("train"):
                    idx = int(dir_.split(".")[1])
                    train_dirs[idx] = dir_
                if dir_.startswith("valid"):
                    idx = int(dir_.split(".")[1])
                    valid_dirs[idx] = dir_

        train_sets, valid_sets = list(), list()

        for (idx_, dir_) in sorted(train_dirs.items()):

            data_dir = os.path.join(root_dir, dir_)
            print("[INFO] Loading training data %i from %s" % (idx_, dir_))

            if opt.data_format in ['bin', 'raw']:
                raise NotImplementedError

            elif opt.data_format in ['scp', 'scpmem', 'mmem']:
                from onmt.data.mmap_indexed_dataset import MMapIndexedDataset
                from onmt.data.scp_dataset import SCPIndexDataset

                if opt.data_format in ['scp', 'scpmem']:
                    audio_data = torch.load(
                        os.path.join(data_dir, "data.scp_path.pt"))
                    src_data = SCPIndexDataset(audio_data, concat=opt.concat)
                else:
                    src_data = MMapIndexedDataset(
                        os.path.join(data_dir, "data.src"))

                tgt_data = MMapIndexedDataset(
                    os.path.join(data_dir, "data.tgt"))

                src_lang_data = MMapIndexedDataset(
                    os.path.join(data_dir, 'data.src_lang'))
                tgt_lang_data = MMapIndexedDataset(
                    os.path.join(data_dir, 'data.tgt_lang'))

                if os.path.exists(os.path.join(data_dir,
                                               'data.src_sizes.npy')):
                    src_sizes = np.load(
                        os.path.join(data_dir, 'data.src_sizes.npy'))
                    tgt_sizes = np.load(
                        os.path.join(data_dir, 'data.tgt_sizes.npy'))
                else:
                    src_sizes, sizes = None, None

                if opt.encoder_type == 'audio':
                    data_type = 'audio'
                else:
                    data_type = 'text'

                if not opt.streaming:
                    train_data = onmt.Dataset(
                        src_data,
                        tgt_data,
                        src_sizes,
                        tgt_sizes,
                        src_lang_data,
                        tgt_lang_data,
                        batch_size_words=opt.batch_size_words,
                        data_type=data_type,
                        sorting=True,
                        batch_size_sents=opt.batch_size_sents,
                        multiplier=opt.batch_size_multiplier,
                        src_align_right=opt.src_align_right,
                        augment=opt.augment_speech,
                        upsampling=opt.upsampling,
                        cleaning=True,
                        verbose=True,
                        num_split=len(opt.gpus))

                    train_sets.append(train_data)

                else:
                    print("Multi-dataset not implemented for Streaming tasks.")
                    raise NotImplementedError

        for (idx_, dir_) in sorted(valid_dirs.items()):

            data_dir = os.path.join(root_dir, dir_)

            print("[INFO] Loading validation data %i from %s" % (idx_, dir_))

            if opt.data_format in ['bin', 'raw']:
                raise NotImplementedError

            elif opt.data_format in ['scp', 'scpmem', 'mmem']:

                if opt.data_format in ['scp', 'scpmem']:
                    audio_data = torch.load(
                        os.path.join(data_dir, "data.scp_path.pt"))
                    src_data = SCPIndexDataset(audio_data, concat=opt.concat)
                else:
                    src_data = MMapIndexedDataset(
                        os.path.join(data_dir, "data.src"))

                tgt_data = MMapIndexedDataset(
                    os.path.join(data_dir, "data.tgt"))

                src_lang_data = MMapIndexedDataset(
                    os.path.join(data_dir, 'data.src_lang'))
                tgt_lang_data = MMapIndexedDataset(
                    os.path.join(data_dir, 'data.tgt_lang'))

                if os.path.exists(os.path.join(data_dir,
                                               'data.src_sizes.npy')):
                    src_sizes = np.load(
                        os.path.join(data_dir, 'data.src_sizes.npy'))
                    tgt_sizes = np.load(
                        os.path.join(data_dir, 'data.tgt_sizes.npy'))
                else:
                    src_sizes, sizes = None, None

                if opt.encoder_type == 'audio':
                    data_type = 'audio'
                else:
                    data_type = 'text'

                if not opt.streaming:
                    valid_data = onmt.Dataset(
                        src_data,
                        tgt_data,
                        src_sizes,
                        tgt_sizes,
                        src_lang_data,
                        tgt_lang_data,
                        batch_size_words=opt.batch_size_words,
                        data_type=data_type,
                        sorting=True,
                        batch_size_sents=opt.batch_size_sents,
                        src_align_right=opt.src_align_right,
                        cleaning=True,
                        verbose=True,
                        debug=True,
                        num_split=len(opt.gpus))

                    valid_sets.append(valid_data)

                else:
                    raise NotImplementedError

        train_data = train_sets
        valid_data = valid_sets

    if opt.load_from:
        checkpoint = torch.load(opt.load_from,
                                map_location=lambda storage, loc: storage)
        print("* Loading dictionaries from the checkpoint")
        dicts = checkpoint['dicts']
    else:
        dicts['tgt'].patch(opt.patch_vocab_multiplier)
        checkpoint = None

    # Put the vocab mask from dicts to the datasets
    for data in [train_data, valid_data]:
        if isinstance(data, list):
            for i, data_ in enumerate(data):
                data_.set_mask(dicts['tgt'].vocab_mask)
                data[i] = data_
        else:
            data.set_mask(dicts['tgt'].vocab_mask)

    if "src" in dicts:
        print(' * vocabulary size. source = %d; target = %d' %
              (dicts['src'].size(), dicts['tgt'].size()))
    else:
        print('[INFO] vocabulary size. target = %d' % (dicts['tgt'].size()))

    print('* Building model...')

    if not opt.fusion:
        if opt.bayes_by_backprop:
            model = build_bayesian_model(opt, dicts)
        else:
            model = build_model(opt, dicts)
        """ Building the loss function """
        # if opt.ctc_loss != 0:
        #     pass
        #     loss_function = NMTAndCTCLossFunc(dicts['tgt'].size(),
        #                                       label_smoothing=opt.label_smoothing,
        #                                       ctc_weight=opt.ctc_loss)
        if opt.nce:
            from onmt.modules.nce.nce_loss import NCELoss
            loss_function = NCELoss(opt.model_size,
                                    dicts['tgt'].size(),
                                    noise_ratio=opt.nce_noise,
                                    logz=9,
                                    label_smoothing=opt.label_smoothing)
        else:
            loss_function = NMTLossFunc(opt.model_size,
                                        dicts['tgt'].size(),
                                        label_smoothing=opt.label_smoothing,
                                        mirror=opt.mirror_loss,
                                        fast_xentropy=opt.fast_xentropy)

        # This function replaces modules with the more optimized counterparts so that it can run faster
        # Currently exp with LayerNorm
        if not opt.memory_profiling:
            optimize_model(model, fp16=opt.fp16)

    else:
        from onmt.model_factory import build_fusion
        from onmt.modules.loss import FusionLoss

        model = build_fusion(opt, dicts)

        loss_function = FusionLoss(dicts['tgt'].size(),
                                   label_smoothing=opt.label_smoothing)

    n_params = sum([p.nelement() for p in model.parameters()])
    print('* number of parameters: %d' % n_params)

    if not opt.debugging and len(opt.gpus) == 1:
        if opt.bayes_by_backprop:

            from onmt.train_utils.bayes_by_backprop_trainer import BayesianTrainer
            trainer = BayesianTrainer(model, loss_function, train_data,
                                      valid_data, dicts, opt)

        else:
            trainer = XETrainer(model, loss_function, train_data, valid_data,
                                dicts, opt)
    else:
        from onmt.train_utils.new_trainer import Trainer
        trainer = Trainer(model, loss_function, train_data, valid_data, dicts,
                          opt)

    trainer.run(checkpoint=checkpoint)
Example #2
0
    def __init__(self, device, train_data, valid_data, dicts, opt, setup_optimizer=True):
        """
        :param model:
        :param device: int (GPU id)
        :param loss_function:
        :param train_data:
        :param valid_data:
        :param dicts:
        :param opt:
        """

        self.device = device
        opt.node_rank = 0
        opt.nodes = 1
        self.world_size = len(opt.gpus)

        # in the case of single node distributed, it should equal self.device
        self.rank = self.device

        # make a group to later use with self.all_reduce
        self.group = dist.group.WORLD

        self.print("[INFO] Training Options:", opt)
        if self.world_size > 1:
            dist.init_process_group(backend='nccl', init_method='env://', world_size=self.world_size, rank=self.rank)

        self.model = None

        if self.rank == 0:
            self.train_data = train_data
            self.valid_data = valid_data
        else:
            # Do we really need to deepcopy the data instances (which could cause memory leak easily)
            self.train_data = copy.deepcopy(train_data)
            self.valid_data = copy.deepcopy(valid_data)

        self.dicts = dicts
        self.opt = opt
        self.cuda = (len(opt.gpus) >= 1 and opt.gpus[0] >= 0)

        assert self.cuda, "[ERROR] Training is only available on GPUs."

        self.start_time = 0

        # setting up models and others
        if opt.lfv_multilingual:
            from onmt.models.speech_recognizer.lid_loss import CrossEntropyLIDLoss
            lid_loss = CrossEntropyLIDLoss(opt.n_languages, opt.label_smoothing, opt.fast_xentropy)
            self.loss_function.add_loss_function(lid_loss, 'lid_loss')

        torch.manual_seed(self.opt.seed)

        # note: we must start creating models after ccreating the processes
        # for some reason passing a pre-created model to a process creates a "pickle" error
        if not opt.fusion:

            if self.is_main():
                print("[INFO] Building models .... ", flush=True)
            model = build_model(opt, dicts)

            """ Building the loss function """
            if opt.ctc_loss > 0.0:
                from onmt.speech.ctc_loss import CTC
                self.ctc_loss_function = CTC(0.0, reduce=True)

            if opt.nce:
                from onmt.modules.nce.nce_loss import NCELoss
                loss_function = NCELoss(opt.model_size, dicts['tgt'].size(), noise_ratio=opt.nce_noise,
                                        logz=9, label_smoothing=opt.label_smoothing)
            else:
                loss_function = NMTLossFunc(opt.model_size, dicts['tgt'].size(),
                                            label_smoothing=opt.label_smoothing,
                                            mirror=opt.mirror_loss,
                                            fast_xentropy=opt.fast_xentropy)

            # This function replaces modules with the more optimized counterparts so that it can run faster
            # Currently exp with LayerNorm
            if not opt.memory_profiling:
                # distributed is required to convert BatchNorm to SyncBatchNorm for DDP
                optimize_model(model, distributed=(self.world_size > 1))

        init_model_parameters(model, opt)
        self.model = model
        self.loss_function = loss_function
        self.grad_scaler = torch.cuda.amp.GradScaler()

        if opt.load_from:
            checkpoint = torch.load(opt.load_from, map_location=lambda storage, loc: storage)
            self.model.load_state_dict(checkpoint['model'])
            if 'scaler' in checkpoint and checkpoint['scaler'] is not None:
                self.grad_scaler.load_state_dict(checkpoint['scaler'])

        if self.cuda:
            torch.cuda.set_device(self.device)

            self.loss_function = self.loss_function.cuda(device=self.device)
            self.model = self.model.cuda(device=self.device)
            if opt.ctc_loss > 0.0:
                self.ctc_loss_function = self.ctc_loss_function.cuda(device=self.device)

            # Ensure that the distributed copies have the same initial parameters
            # Manual seed may not work the same for different GPU models.
            # if self.world_size > 1:
            #     params = [p for p in self.model.parameters()]
            #
            #     with torch.no_grad():
            #         if not self.is_main():
            #             # zero everything except for the main model
            #             for p in params:
            #                 p.zero_()
            #         else:
            #             for p in params:
            #                 p.add_(0)
            #
            # # run all_reduce to ensure that all models have exactly the same parameters
            # if self.world_size > 1:
            #     params = [p for p in self.model.parameters()]
            #     all_reduce_and_rescale_tensors(params, 1)

        if setup_optimizer:

            self.optim = onmt.Optim(opt)
            self.optim.set_parameters(self.model.parameters())

            if self.is_main():
                print("[INFO] Optimizer: ", self.optim.optimizer)

            if opt.load_from:
                if 'optim' in checkpoint and checkpoint['optim'] is not None and not opt.reset_optim:
                    self.optim.load_state_dict(checkpoint['optim'])

        if self.world_size > 1:
            # find_unused_parameters may be required for dropped layer (parameters that are not connected to
            # any particular graph)
            find_unused_parameters = True

            self.model = torch.nn.parallel.DistributedDataParallel(self.model, device_ids=[self.rank],
                                                                   output_device=self.rank,
                                                                   find_unused_parameters=find_unused_parameters)

        print("[INFO] Process %d ready." % self.rank, flush=True)
Example #3
0
    def __init__(self,
                 device,
                 train_data,
                 valid_data,
                 dicts,
                 opt,
                 setup_optimizer=True):
        """
        :param model:
        :param device: int (GPU id)
        :param loss_function:
        :param train_data:
        :param valid_data:
        :param dicts:
        :param opt:
        """

        # self.model = model

        # self.model = model
        # self.loss_function = loss_function
        self.device = device
        opt.node_rank = 0
        opt.nodes = 1
        self.world_size = len(opt.gpus)

        # in the case of single node distributed, it should equal self.device
        self.rank = self.device

        # make a group to later use with dist.all_reduce
        self.group = dist.group.WORLD

        self.print("[INFO] Training Options:", opt)
        dist.init_process_group(backend='nccl',
                                init_method='env://',
                                world_size=self.world_size,
                                rank=self.rank)

        self.model = None

        if self.rank == 0:
            self.train_data = train_data
            self.valid_data = valid_data
        else:
            self.train_data = copy.deepcopy(train_data)
            self.valid_data = copy.deepcopy(valid_data)

        self.dicts = dicts
        self.opt = opt
        self.cuda = (len(opt.gpus) >= 1 and opt.gpus[0] >= 0)

        assert self.cuda, "[ERROR] Training is only available on GPUs."

        self.start_time = 0

        # setting up models and others
        if opt.lfv_multilingual:
            from onmt.models.speech_recognizer.lid_loss import CrossEntropyLIDLoss
            lid_loss = CrossEntropyLIDLoss(opt.n_languages,
                                           opt.label_smoothing,
                                           opt.fast_xentropy)
            self.loss_function.add_loss_function(lid_loss, 'lid_loss')

        torch.manual_seed(self.opt.seed)

        # note: we must start creating models after ccreating the processes
        # for some reason passing a pre-created model to a process creates a "pickle" error
        if not opt.fusion:

            if self.is_main():
                print("BUILDING MODEL .... ", flush=True)
            model = build_model(opt, dicts)
            """ Building the loss function """
            if opt.ctc_loss != 0:
                loss_function = NMTAndCTCLossFunc(
                    dicts['tgt'].size(),
                    label_smoothing=opt.label_smoothing,
                    ctc_weight=opt.ctc_loss)
            elif opt.nce:
                from onmt.modules.nce.nce_loss import NCELoss
                loss_function = NCELoss(opt.model_size,
                                        dicts['tgt'].size(),
                                        noise_ratio=opt.nce_noise,
                                        logz=9,
                                        label_smoothing=opt.label_smoothing)
            else:
                loss_function = NMTLossFunc(
                    opt.model_size,
                    dicts['tgt'].size(),
                    label_smoothing=opt.label_smoothing,
                    mirror=opt.mirror_loss,
                    fast_xentropy=opt.fast_xentropy)

            # This function replaces modules with the more optimized counterparts so that it can run faster
            # Currently exp with LayerNorm
            if not opt.memory_profiling:
                # distributed is required to convert BatchNorm to SyncBatchNorm for DDP
                optimize_model(model, distributed=(self.world_size > 1))
                # optimize_model(model)

        init_model_parameters(model, opt)
        self.model = model
        self.loss_function = loss_function

        if self.cuda:
            torch.cuda.set_device(self.device)

            self.loss_function = self.loss_function.cuda(device=self.device)
            self.model = self.model.cuda(device=self.device)

            # Ensure that the distributed copies have the same initial parameters
            # Manual seed may not work the same for different GPU models.
            if self.world_size > 1:
                params = [p for p in self.model.parameters()]

                with torch.no_grad():
                    if not self.is_main():
                        for p in params:
                            p.zero_()
                    else:
                        for p in params:
                            p.add_(0)

            if self.world_size > 1:
                params = [p for p in self.model.parameters()]
                all_reduce_and_rescale_tensors(params, 1)

        if setup_optimizer:

            self.optim = onmt.Optim(opt)
            self.optim.set_parameters(self.model.parameters())

            if self.is_main():
                print("[INFO] Optimizer: ", self.optim.optimizer)

            if not self.opt.fp16:
                opt_level = "O0"
                keep_batchnorm_fp32 = False
            elif self.opt.fp16_mixed:
                opt_level = "O1"
                keep_batchnorm_fp32 = None
            else:
                opt_level = "O2"
                keep_batchnorm_fp32 = False

            if self.cuda:
                self.model, self.optim.optimizer = amp.initialize(
                    self.model,
                    self.optim.optimizer,
                    opt_level=opt_level,
                    keep_batchnorm_fp32=keep_batchnorm_fp32,
                    loss_scale="dynamic",
                    verbosity=1 if self.opt.verbose else 0)

            # wrap the model into DDP after initializing by amp
            if self.world_size > 1:
                """
                delay_allreduce is required to avoid allreduce error during backward pass
                """
                self.model = DDP(self.model,
                                 delay_allreduce=True,
                                 gradient_average=False)

                # torch DDP is more likely to work with the official amp autocast
                # self.model = torch.nn.parallel.DistributedDataParallel(self.model, device_ids=[self.rank],
                #                                                        output_device=self.rank,
                #                                                        find_unused_parameters=True)

        print("[INFO] Process %d ready." % self.rank, flush=True)
Example #4
0
    def __init__(self,
                 device,
                 train_data,
                 valid_data,
                 dicts,
                 opt,
                 setup_optimizer=True):
        """
        :param model:
        :param device: int (GPU id)
        :param loss_function:
        :param train_data:
        :param valid_data:
        :param dicts:
        :param opt:
        """

        self.device = device
        opt.node_rank = 0
        opt.nodes = 1
        self.world_size = len(opt.gpus)

        # in the case of single node distributed, it should equal self.device
        self.rank = self.device

        # make a group to later use with self.all_reduce
        self.group = dist.group.WORLD

        self.print("[INFO] Training Options:", opt)
        if self.world_size > 1:
            dist.init_process_group(backend='nccl',
                                    init_method='env://',
                                    world_size=self.world_size,
                                    rank=self.rank)

        self.model = None

        if self.rank == 0:
            self.train_data = train_data
            self.valid_data = valid_data
        else:
            # Do we really need to deepcopy the data instances (which could cause memory leak easily)
            self.train_data = copy.deepcopy(train_data)
            self.valid_data = copy.deepcopy(valid_data)

        self.dicts = dicts
        self.opt = opt
        self.cuda = (len(opt.gpus) >= 1 and opt.gpus[0] >= 0)

        assert self.cuda, "[ERROR] Training is only available on GPUs."

        self.start_time = 0

        # setting up models and others
        if opt.lfv_multilingual:
            from onmt.models.speech_recognizer.lid_loss import CrossEntropyLIDLoss
            lid_loss = CrossEntropyLIDLoss(opt.n_languages,
                                           opt.label_smoothing,
                                           opt.fast_xentropy)
            self.loss_function.add_loss_function(lid_loss, 'lid_loss')

        torch.manual_seed(self.opt.seed)

        # note: we must start creating models after ccreating the processes
        # for some reason passing a pre-created model to a process creates a "pickle" error
        if not opt.fusion:

            if self.is_main():
                print("[INFO] Building models .... ", flush=True)
            model = build_model(opt, dicts)
            """ Building the loss function """
            if opt.ctc_loss > 0.0:
                from onmt.speech.ctc_loss import CTC
                self.ctc_loss_function = CTC(0.0, reduce=True)

            if opt.nce:
                from onmt.modules.nce.nce_loss import NCELoss
                loss_function = NCELoss(opt.model_size,
                                        dicts['tgt'].size(),
                                        noise_ratio=opt.nce_noise,
                                        logz=9,
                                        label_smoothing=opt.label_smoothing)
            else:
                loss_function = NMTLossFunc(
                    opt.model_size,
                    dicts['tgt'].size(),
                    label_smoothing=opt.label_smoothing,
                    mirror=opt.mirror_loss,
                    fast_xentropy=opt.fast_xentropy)

            # This function replaces modules with the more optimized counterparts so that it can run faster
            # Currently exp with LayerNorm
            if not opt.memory_profiling:
                # distributed is required to convert BatchNorm to SyncBatchNorm for DDP
                optimize_model(model, distributed=(self.world_size > 1))

        init_model_parameters(model, opt)
        self.model = model
        self.loss_function = loss_function
        # self.grad_scaler = torch.cuda.amp.GradScaler()

        if self.cuda:
            torch.cuda.set_device(self.device)

            self.loss_function = self.loss_function.cuda(device=self.device)
            self.model = self.model.cuda(device=self.device)
            if opt.ctc_loss > 0.0:
                self.ctc_loss_function = self.ctc_loss_function.cuda(
                    device=self.device)

        if opt.load_from:
            checkpoint = torch.load(opt.load_from,
                                    map_location=lambda storage, loc: storage)

        if setup_optimizer:

            self.optim = onmt.Optim(opt)
            self.optim.set_parameters(self.model.parameters())

            if self.is_main():
                print("[INFO] Optimizer: ", self.optim.optimizer)

            if opt.load_from:
                if 'optim' in checkpoint and checkpoint[
                        'optim'] is not None and not opt.reset_optim:
                    self.optim.load_state_dict(checkpoint['optim'])

        if not self.opt.fp16:
            opt_level = "O0"
            keep_batchnorm_fp32 = False
        elif self.opt.fp16_mixed:
            opt_level = "O1"
            keep_batchnorm_fp32 = None
        else:
            opt_level = "O2"
            keep_batchnorm_fp32 = False

        self.opt_level = opt_level

        if self.cuda:
            self.model, self.optim.optimizer = amp.initialize(
                self.model,
                self.optim.optimizer,
                opt_level=opt_level,
                keep_batchnorm_fp32=keep_batchnorm_fp32,
                loss_scale="dynamic",
                verbosity=1 if self.opt.verbose else 1)

        if opt.load_from:
            self.model.load_state_dict(checkpoint['model'])
            if prec_opt is not None and hasattr(prec_opt, "fp16_mixed"):
                # Only load amp information if the mode is the same
                # Maybe its better to change between optimization mode?
                if opt.fp16_mixed == prec_opt.fp16_mixed and opt.fp16 == prec_opt.fp16:
                    if 'amp' in checkpoint:
                        try:
                            amp.load_state_dict(checkpoint['amp'])
                        except Exception:
                            # loading the amp state can fail
                            pass

        if self.world_size > 1:
            # find_unused_parameters may be required for dropped layer (parameters that are not connected to
            # any particular graph)
            # find_unused_parameters = True

            self.model = DDP(self.model,
                             delay_allreduce=True,
                             gradient_average=False)

        print("[INFO] Process %d ready." % self.rank, flush=True)
Example #5
0
def main():
    if opt.data_format in ['bin', 'raw']:
        start = time.time()

        if opt.data.endswith(".train.pt"):
            print("Loading data from '%s'" % opt.data)
            dataset = torch.load(opt.data)
        else:
            print("Loading data from %s" % opt.data + ".train.pt")
            dataset = torch.load(opt.data + ".train.pt")

        elapse = str(datetime.timedelta(seconds=int(time.time() - start)))
        print("Done after %s" % elapse)

        dicts = dataset['dicts']

        # For backward compatibility
        train_dict = defaultdict(lambda: None, dataset['train'])
        valid_dict = defaultdict(lambda: None, dataset['valid'])

        if train_dict['src_lang'] is not None:
            assert 'langs' in dicts
            train_src_langs = train_dict['src_lang']
            train_tgt_langs = train_dict['tgt_lang']
        else:
            # allocate new languages
            dicts['langs'] = {'src': 0, 'tgt': 1}
            train_src_langs = list()
            train_tgt_langs = list()
            # Allocation one for the bilingual case
            train_src_langs.append(torch.Tensor([dicts['langs']['src']]))
            train_tgt_langs.append(torch.Tensor([dicts['langs']['tgt']]))

        if not opt.streaming:
            train_data = onmt.Dataset(train_dict['src'],
                                      train_dict['tgt'],
                                      train_src_langs,
                                      train_tgt_langs,
                                      batch_size_words=opt.batch_size_words,
                                      data_type=dataset.get("type", "text"),
                                      sorting=True,
                                      batch_size_sents=opt.batch_size_sents,
                                      multiplier=opt.batch_size_multiplier,
                                      augment=opt.augment_speech,
                                      upsampling=opt.upsampling)
        else:
            train_data = onmt.StreamDataset(
                train_dict['src'],
                train_dict['tgt'],
                train_src_langs,
                train_tgt_langs,
                batch_size_words=opt.batch_size_words,
                data_type=dataset.get("type", "text"),
                sorting=True,
                batch_size_sents=opt.batch_size_sents,
                multiplier=opt.batch_size_multiplier,
                augment=opt.augment_speech,
                upsampling=opt.upsampling)

        if valid_dict['src_lang'] is not None:
            assert 'langs' in dicts
            valid_src_langs = valid_dict['src_lang']
            valid_tgt_langs = valid_dict['tgt_lang']
        else:
            # allocate new languages
            valid_src_langs = list()
            valid_tgt_langs = list()

            # Allocation one for the bilingual case
            valid_src_langs.append(torch.Tensor([dicts['langs']['src']]))
            valid_tgt_langs.append(torch.Tensor([dicts['langs']['tgt']]))

        if not opt.streaming:
            valid_data = onmt.Dataset(valid_dict['src'],
                                      valid_dict['tgt'],
                                      valid_src_langs,
                                      valid_tgt_langs,
                                      batch_size_words=opt.batch_size_words,
                                      data_type=dataset.get("type", "text"),
                                      sorting=True,
                                      batch_size_sents=opt.batch_size_sents,
                                      upsampling=opt.upsampling)
        else:
            valid_data = onmt.StreamDataset(
                valid_dict['src'],
                valid_dict['tgt'],
                valid_src_langs,
                valid_tgt_langs,
                batch_size_words=opt.batch_size_words,
                data_type=dataset.get("type", "text"),
                sorting=True,
                batch_size_sents=opt.batch_size_sents,
                upsampling=opt.upsampling)

        print(' * number of training sentences. %d' %
              len(dataset['train']['src']))
        print(' * maximum batch size (words per batch). %d' %
              opt.batch_size_words)

    elif opt.data_format == 'mmem':
        print("Loading memory mapped data files ....")
        start = time.time()
        from onmt.data.mmap_indexed_dataset import MMapIndexedDataset

        dicts = torch.load(opt.data + ".dict.pt")

        # allocate languages if not
        if 'langs' not in dicts:
            dicts['langs'] = {'src': 0, 'tgt': 1}
        else:
            print(dicts['langs'])

        train_path = opt.data + '.train'
        train_src = MMapIndexedDataset(train_path + '.src')
        train_tgt = MMapIndexedDataset(train_path + '.tgt')

        # check the lang files if they exist (in the case of multi-lingual models)
        if os.path.exists(train_path + '.src_lang.bin'):
            assert 'langs' in dicts
            train_src_langs = MMapIndexedDataset(train_path + '.src_lang')
            train_tgt_langs = MMapIndexedDataset(train_path + '.tgt_lang')
        else:
            train_src_langs = list()
            train_tgt_langs = list()
            # Allocate a Tensor(1) for the bilingual case
            train_src_langs.append(torch.Tensor([dicts['langs']['src']]))
            train_tgt_langs.append(torch.Tensor([dicts['langs']['tgt']]))

        if opt.encoder_type == 'audio':
            data_type = 'audio'
        else:
            data_type = 'text'

        if not opt.streaming:
            train_data = onmt.Dataset(train_src,
                                      train_tgt,
                                      train_src_langs,
                                      train_tgt_langs,
                                      batch_size_words=opt.batch_size_words,
                                      data_type=data_type,
                                      sorting=True,
                                      batch_size_sents=opt.batch_size_sents,
                                      multiplier=opt.batch_size_multiplier,
                                      src_align_right=opt.src_align_right,
                                      upsampling=opt.upsampling,
                                      cleaning=True,
                                      verbose=True)
        else:
            train_data = onmt.StreamDataset(
                train_src,
                train_tgt,
                train_src_langs,
                train_tgt_langs,
                batch_size_words=opt.batch_size_words,
                data_type=data_type,
                sorting=False,
                batch_size_sents=opt.batch_size_sents,
                multiplier=opt.batch_size_multiplier,
                upsampling=opt.upsampling)

        valid_path = opt.data + '.valid'
        valid_src = MMapIndexedDataset(valid_path + '.src')
        valid_tgt = MMapIndexedDataset(valid_path + '.tgt')

        if os.path.exists(valid_path + '.src_lang.bin'):
            assert 'langs' in dicts
            valid_src_langs = MMapIndexedDataset(valid_path + '.src_lang')
            valid_tgt_langs = MMapIndexedDataset(valid_path + '.tgt_lang')
        else:
            valid_src_langs = list()
            valid_tgt_langs = list()

            # Allocation one for the bilingual case
            valid_src_langs.append(torch.Tensor([dicts['langs']['src']]))
            valid_tgt_langs.append(torch.Tensor([dicts['langs']['tgt']]))

        if not opt.streaming:
            valid_data = onmt.Dataset(valid_src,
                                      valid_tgt,
                                      valid_src_langs,
                                      valid_tgt_langs,
                                      batch_size_words=opt.batch_size_words,
                                      data_type="text",
                                      sorting=False,
                                      batch_size_sents=opt.batch_size_sents,
                                      src_align_right=opt.src_align_right,
                                      cleaning=True,
                                      verbose=True)
        else:
            # for validation data, we have to go through sentences (very slow but to ensure correctness)
            valid_data = onmt.StreamDataset(
                valid_src,
                valid_tgt,
                valid_src_langs,
                valid_tgt_langs,
                batch_size_words=opt.batch_size_words,
                data_type="text",
                sorting=True,
                batch_size_sents=opt.batch_size_sents)

        elapse = str(datetime.timedelta(seconds=int(time.time() - start)))
        print("Done after %s" % elapse)

    else:
        raise NotImplementedError

    # additional_data = []
    # if opt.additional_data != "none":
    #     add_data = opt.additional_data.split(";")
    #     add_format = opt.additional_data_format.split(";")
    #     assert (len(add_data) == len(add_format))
    #     for i in range(len(add_data)):
    #         if add_format[i] == 'raw':
    #             if add_data[i].endswith(".train.pt"):
    #                 print("Loading data from '%s'" % opt.data)
    #                 add_dataset = torch.load(add_data[i])
    #             else:
    #                 print("Loading data from %s" % opt.data + ".train.pt")
    #                 add_dataset = torch.load(add_data[i] + ".train.pt")
    #
    #             additional_data.append(onmt.Dataset(add_dataset['train']['src'],
    #                                                 dataset['train']['tgt'], batch_size_words=opt.batch_size_words,
    #                                                 data_type=dataset.get("type", "text"), sorting=True,
    #                                                 batch_size_sents=opt.batch_size_sents,
    #                                                 multiplier=opt.batch_size_multiplier,
    #                                                 reshape_speech=opt.reshape_speech,
    #                                                 augment=opt.augment_speech))
    #         elif add_format[i] == 'bin':
    #
    #             from onmt.data.indexed_dataset import IndexedInMemoryDataset
    #
    #             train_path = add_data[i] + '.train'
    #             train_src = IndexedInMemoryDataset(train_path + '.src')
    #             train_tgt = IndexedInMemoryDataset(train_path + '.tgt')
    #
    #             additional_data.append(onmt.Dataset(train_src,
    #                                                 train_tgt,
    #                                                 batch_size_words=opt.batch_size_words,
    #                                                 data_type=opt.encoder_type,
    #                                                 batch_size_sents=opt.batch_size_sents,
    #                                                 multiplier=opt.batch_size_multiplier))

    if opt.load_from:
        checkpoint = torch.load(opt.load_from,
                                map_location=lambda storage, loc: storage)
        print("* Loading dictionaries from the checkpoint")
        dicts = checkpoint['dicts']
    else:
        dicts['tgt'].patch(opt.patch_vocab_multiplier)
        checkpoint = None

    if "src" in dicts:
        print(' * vocabulary size. source = %d; target = %d' %
              (dicts['src'].size(), dicts['tgt'].size()))
    else:
        print(' * vocabulary size. target = %d' % (dicts['tgt'].size()))

    print(' * number of sentences in training data: %d' % train_data.size())
    print(' * number of sentences in validation data: %d' % valid_data.size())

    print('* Building model...')

    if not opt.fusion:
        model = build_model(opt, dicts)
        """ Building the loss function """
        if opt.ctc_loss != 0:
            loss_function = NMTAndCTCLossFunc(
                dicts['tgt'].size(),
                label_smoothing=opt.label_smoothing,
                ctc_weight=opt.ctc_loss)
        else:
            loss_function = NMTLossFunc(opt.model_size,
                                        dicts['tgt'].size(),
                                        label_smoothing=opt.label_smoothing,
                                        mirror=opt.mirror_loss)

        # This function replaces modules with the more optimized counterparts so that it can run faster
        # Currently exp with LayerNorm
        optimize_model(model)

    else:
        from onmt.model_factory import build_fusion
        from onmt.modules.loss import FusionLoss

        model = build_fusion(opt, dicts)

        loss_function = FusionLoss(dicts['tgt'].size(),
                                   label_smoothing=opt.label_smoothing)

    n_params = sum([p.nelement() for p in model.parameters()])
    print('* number of parameters: %d' % n_params)

    if len(opt.gpus) > 1 or opt.virtual_gpu > 1:
        raise NotImplementedError(
            "Multi-GPU training is not supported at the moment.")
    else:
        trainer = XETrainer(model, loss_function, train_data, valid_data,
                            dicts, opt)

    trainer.run(checkpoint=checkpoint)
def main():

    start = time.time()
    print("Loading data from '%s'" % opt.data)

    if opt.data_format == 'raw':
        dataset = torch.load(opt.data)
        elapse = str(datetime.timedelta(seconds=int(time.time() - start)))
        print("Done after %s" % elapse)

        dicts = dataset['dicts']

        # For backward compatibility
        train_dict = defaultdict(lambda: None, dataset['train'])
        valid_dict = defaultdict(lambda: None, dataset['valid'])

        if train_dict['src_lang'] is not None:
            assert 'langs' in dicts
            train_src_langs = train_dict['src_lang']
            train_tgt_langs = train_dict['tgt_lang']
        else:
            # allocate new languages
            dicts['langs'] = {'src': 0, 'tgt': 1}
            train_src_langs = list()
            train_tgt_langs = list()
            # Allocation one for the bilingual case
            train_src_langs.append(torch.Tensor([dicts['langs']['src']]))
            train_tgt_langs.append(torch.Tensor([dicts['langs']['tgt']]))

        train_data = LanguageModelDataset(
            dataset['train']['tgt'],
            train_tgt_langs,
            batch_size_sents=opt.batch_size_sents,
            seq_length=opt.lm_seq_length)

        if valid_dict['src_lang'] is not None:
            assert 'langs' in dicts
            valid_src_langs = valid_dict['src_lang']
            valid_tgt_langs = valid_dict['tgt_lang']
        else:
            # allocate new languages
            valid_src_langs = list()
            valid_tgt_langs = list()

            # Allocation one for the bilingual case
            valid_src_langs.append(torch.Tensor([dicts['langs']['src']]))
            valid_tgt_langs.append(torch.Tensor([dicts['langs']['tgt']]))

        valid_data = LanguageModelDataset(
            dataset['valid']['tgt'],
            valid_tgt_langs,
            batch_size_sents=opt.batch_size_sents,
            seq_length=opt.lm_seq_length)

        if opt.load_from:
            checkpoint = torch.load(opt.load_from,
                                    map_location=lambda storage, loc: storage)
            print("* Loading dictionaries from the checkpoint")
            dicts = checkpoint['dicts']
        else:
            dicts['tgt'].patch(opt.patch_vocab_multiplier)
            checkpoint = None

        if "src" in dicts:
            print(' * vocabulary size. source = %d; target = %d' %
                  (dicts['src'].size(), dicts['tgt'].size()))
        else:
            print(' * vocabulary size. target = %d' % (dicts['tgt'].size()))

        print(' * number of training sentences. %d' % train_data.size())
        print(' * maximum batch size (words per batch). %d' %
              (opt.batch_size_sents * opt.lm_seq_length))

    else:
        raise NotImplementedError

    print('Building model...')
    model = build_language_model(opt, dicts)
    optimize_model(model)
    """ Building the loss function """
    loss_function = NMTLossFunc(opt.model_size,
                                dicts['tgt'].size(),
                                label_smoothing=opt.label_smoothing)

    n_params = sum([p.nelement() for p in model.parameters()])
    print('* number of parameters: %d' % n_params)

    if len(opt.gpus) > 1 or opt.virtual_gpu > 1:
        raise NotImplementedError("Multi-GPU training is not supported ATM.")
    else:
        # if opt.fp16:
        #     trainer = FP16XETrainer(model, loss_function, train_data, valid_data, dicts, opt)
        # else:
        trainer = XETrainer(model, loss_function, train_data, valid_data,
                            dicts, opt)

    trainer.run(checkpoint=checkpoint)