Example #1
0
    def test_export_node(self):
        name = "TestNode"
        op = "Test"
        inputs = [Variable(name="input")]
        outputs = [Variable(name="output")]
        attrs = OrderedDict()
        attrs["float_attr"] = 4.0
        attrs["int_attr"] = 10
        attrs["str_attr"] = "constant"
        attrs["tensor_attr"] = Constant(
            "testTensor", np.ones(shape=(1, 2, 3, 4), dtype=np.float32))
        attrs["floats_attr"] = [1.0, 2.0, 3.0, 4.0]
        attrs["ints_attr"] = [4, 3, 2, 1]
        attrs["strings_attr"] = ["constant", "and", "variable"]
        node = Node(op=op,
                    name=name,
                    inputs=inputs,
                    outputs=outputs,
                    attrs=attrs)

        onnx_node = OnnxExporter.export_node(node)
        assert onnx_node.name == name
        assert onnx_node.op_type == op
        assert onnx_node.input == ["input"]
        assert onnx_node.output == ["output"]
        for onnx_attr, (name, attr) in zip(onnx_node.attribute, attrs.items()):
            assert onnx_attr.name == name
            if isinstance(attr, float):
                assert onnx_attr.f == attr
            elif isinstance(attr, int):
                assert onnx_attr.i == attr
            elif isinstance(attr, str):
                assert onnx_attr.s.decode() == attr
            elif isinstance(attr, Tensor):
                assert onnx_attr.t.SerializeToString(
                ) == OnnxExporter.export_tensor_proto(
                    attr).SerializeToString()
            elif isinstance(attr, list):
                if isinstance(attr[0], float):
                    assert onnx_attr.floats == attr
                elif isinstance(attr[0], int):
                    assert onnx_attr.ints == attr
                elif isinstance(attr[0], str):
                    assert [s.decode() for s in onnx_attr.strings] == attr
                else:
                    raise AssertionError(
                        "Unrecognized list attribute: ({:}: {:}) of type: {:}".
                        format(name, attr, type(attr)))
            else:
                raise AssertionError(
                    "Unrecognized attribute: ({:}: {:}) of type: {:}".format(
                        name, attr, type(attr)))
Example #2
0
def export_onnx(graph: Graph,
                do_type_check=True,
                **kwargs) -> "onnx.ModelProto":
    """
    Exports an onnx-graphsurgeon Graph to an ONNX model.

    Args:
        graph (Graph): The graph to export

    Optional Args:
        do_type_check (bool): Whether to check that input and output tensors have data types defined, and fail if not.
        **kwargs: Additional arguments to onnx.helper.make_model

    Returns:
        onnx.ModelProto: A corresponding ONNX model.
    """
    from onnx_graphsurgeon.exporters.onnx_exporter import OnnxExporter
    import onnx

    onnx_graph = OnnxExporter.export_graph(graph, do_type_check=do_type_check)

    if "opset_imports" not in kwargs:
        kwargs["opset_imports"] = [onnx.helper.make_opsetid("", graph.opset)]

    return onnx.helper.make_model(onnx_graph, **kwargs)
Example #3
0
    def test_export_variable_tensor_empty_shape(self):
        shape = None

        tensor = Variable(dtype=np.float32,
                          shape=shape,
                          name="variable_tensor")
        onnx_tensor = OnnxExporter.export_value_info_proto(tensor,
                                                           do_type_check=True)
        assert not onnx_tensor.type.tensor_type.HasField("shape")
Example #4
0
 def test_export_graph(self, model):
     onnx_graph = model.load().graph
     graph = OnnxImporter.import_graph(onnx_graph)
     exported_onnx_graph = OnnxExporter.export_graph(graph)
     imported_graph = OnnxImporter.import_graph(exported_onnx_graph)
     assert graph == imported_graph
     assert graph.opset == imported_graph.opset
     # ONNX exports the initializers in this model differently after importing - ONNX GS can't do much about this.
     if model.path != lstm_model().path:
         assert onnx_graph == exported_onnx_graph
Example #5
0
    def test_export_constant_tensor_to_tensor_proto(self):
        name = "constant_tensor"
        shape = (3, 224, 224)
        values = np.random.random_sample(size=shape).astype(np.float32)

        tensor = Constant(name=name, values=values)
        onnx_tensor = OnnxExporter.export_tensor_proto(tensor)
        assert onnx_tensor.name == name
        assert np.all(onnx.numpy_helper.to_array(onnx_tensor) == values)
        assert onnx_tensor.data_type == onnx.TensorProto.FLOAT
        assert tuple(onnx_tensor.dims) == shape
Example #6
0
    def test_export_constant_tensor_lazy_values_to_tensor_proto(self):
        name = "constant_tensor"
        shape = (3, 3, 3)
        dtype = np.float32
        onnx_tensor = onnx.numpy_helper.from_array(
            np.ones(shape=shape, dtype=dtype))
        tensor = Constant(name=name, values=LazyValues(onnx_tensor))

        # Exporter should *not* load LazyValues into a numpy array.
        onnx_tensor = OnnxExporter.export_tensor_proto(tensor)
        assert isinstance(tensor._values, LazyValues)
Example #7
0
    def test_export_variable_tensor_scalar_shape(self):
        shape = [None]

        tensor = Variable(dtype=np.float32,
                          shape=shape,
                          name="variable_tensor")
        onnx_tensor = OnnxExporter.export_value_info_proto(tensor,
                                                           do_type_check=True)
        assert not onnx_tensor.type.tensor_type.shape.dim[0].HasField(
            "dim_param")
        assert not onnx_tensor.type.tensor_type.shape.dim[0].HasField(
            "dim_value")
Example #8
0
    def test_export_variable_tensor_empty_dim_param(self):
        shape = ("", 224, 224)

        tensor = Variable(dtype=np.float32,
                          shape=shape,
                          name="variable_tensor")
        onnx_tensor = OnnxExporter.export_value_info_proto(tensor,
                                                           do_type_check=True)

        onnx_shape = []
        for dim in onnx_tensor.type.tensor_type.shape.dim:
            onnx_shape.append(
                dim.dim_value if dim.HasField("dim_value") else dim.dim_param)
        assert tuple(onnx_shape) == shape
Example #9
0
    def test_export_variable_tensor(self):
        name = "variable_tensor"
        shape = (3, 224, 224)
        dtype = np.float32

        tensor = Variable(dtype=dtype, shape=shape, name=name)
        onnx_tensor = OnnxExporter.export_value_info_proto(tensor,
                                                           do_type_check=True)
        assert onnx_tensor.name == name
        assert onnx_tensor.type.tensor_type.elem_type == onnx.TensorProto.FLOAT

        onnx_shape = []
        for dim in onnx_tensor.type.tensor_type.shape.dim:
            onnx_shape.append(dim.dim_value)
        assert tuple(onnx_shape) == shape
Example #10
0
    def test_export_constant_tensor_to_value_info_proto(self):
        name = "constant_tensor"
        shape = (3, 224, 224)
        values = np.random.random_sample(size=shape).astype(np.float32)

        tensor = Constant(name=name, values=values)
        onnx_tensor = OnnxExporter.export_value_info_proto(tensor,
                                                           do_type_check=True)
        assert onnx_tensor.name == name
        assert onnx_tensor.type.tensor_type.elem_type == onnx.TensorProto.FLOAT

        onnx_shape = []
        for dim in onnx_tensor.type.tensor_type.shape.dim:
            onnx_shape.append(dim.dim_value)
        assert tuple(onnx_shape) == shape