Example #1
0
 def wtest_ort_gradient_optimizers_binary(self, use_weight=False):
     from onnxcustom.utils.orttraining_helper import add_loss_output
     from onnxcustom.training.optimizers import OrtGradientOptimizer
     X = numpy.arange(60).astype(numpy.float32).reshape((-1, 3))
     y = numpy.arange(X.shape[0]).astype(numpy.float32).reshape(
         (-1, 1)) > 10
     X = X.astype(numpy.float32)
     y = y.astype(numpy.int64)
     y[0, 0] = 0
     y[-1, 0] = 1
     w = (numpy.random.rand(X.shape[0]) + 1).astype(numpy.float32)
     X_train, _, y_train, __, w_train, ___ = train_test_split(X, y, w)
     reg = SGDClassifier(loss='log')
     reg.fit(X_train, y_train.ravel())
     onx = to_onnx(reg,
                   X_train,
                   target_opset=opset,
                   black_op={'LinearClassifier'},
                   options={'zipmap': False})
     onx_loss = add_loss_output(
         onx,
         'log',
         output_index=1,
         weight_name='weight' if use_weight else None)
     inits = ['intercept', 'coef']
     inputs = onx_loss.graph.input
     self.assertEqual(len(inputs), 3 if use_weight else 2)
     dt = inputs[1].type.tensor_type.elem_type
     self.assertEqual(TensorProto.INT64, dt)  # pylint: disable=E1101
     train_session = OrtGradientOptimizer(onx_loss,
                                          inits,
                                          learning_rate=1e9)
     self.assertRaise(lambda: train_session.get_state(), AttributeError)
     if use_weight:
         train_session.fit(X_train,
                           y_train.reshape((-1, 1)),
                           w_train.reshape((-1, 1)),
                           use_numpy=False)
     else:
         train_session.fit(X_train,
                           y_train.reshape((-1, 1)),
                           use_numpy=False)
     state_tensors = train_session.get_state()
     self.assertEqual(len(state_tensors), 2)
     r = repr(train_session)
     self.assertIn("OrtGradientOptimizer(model_onnx=", r)
     self.assertIn("learning_rate='invscaling'", r)
     losses = train_session.train_losses_
     self.assertGreater(len(losses), 1)
     if any(map(numpy.isnan, losses)):
         raise AssertionError(losses)
Example #2
0
 def wtest_ort_gradient_optimizers_reg(self, use_weight=False):
     from onnxcustom.utils.orttraining_helper import add_loss_output
     from onnxcustom.training.optimizers import OrtGradientOptimizer
     X = numpy.arange(60).astype(numpy.float32).reshape((-1, 3))
     y = numpy.arange(X.shape[0]).astype(numpy.float32).reshape((-1, 1))
     y[0, 0] += 1
     y[-1, 0] += 1
     w = (numpy.random.rand(X.shape[0]) + 1).astype(numpy.float32)
     X_train, _, y_train, __, w_train, ___ = train_test_split(X, y, w)
     reg = SGDRegressor()
     reg.fit(X_train, y_train.ravel())
     onx = to_onnx(reg,
                   X_train,
                   target_opset=opset,
                   black_op={'LinearRegressor'})
     onx_loss = add_loss_output(
         onx, 'squared_error', weight_name='weight' if use_weight else None)
     inits = ['intercept', 'coef']
     inputs = onx_loss.graph.input
     self.assertEqual(len(inputs), 3 if use_weight else 2)
     train_session = OrtGradientOptimizer(onx_loss,
                                          inits,
                                          learning_rate=1e9)
     self.assertRaise(lambda: train_session.get_state(), AttributeError)
     if use_weight:
         self.assertRaise(
             lambda: train_session.fit(X_train,
                                       y_train.reshape((-1, 1)),
                                       w_train.reshape((-1, 1)),
                                       use_numpy=False), ConvergenceError)
     else:
         self.assertRaise(
             lambda: train_session.fit(
                 X_train, y_train.reshape((-1, 1)), use_numpy=False),
             ConvergenceError)
     state_tensors = train_session.get_state()
     self.assertEqual(len(state_tensors), 2)
     r = repr(train_session)
     self.assertIn("OrtGradientOptimizer(model_onnx=", r)
     self.assertIn("learning_rate='invscaling'", r)
     losses = train_session.train_losses_
     self.assertGreater(len(losses), 1)
     if any(map(numpy.isnan, losses)):
         raise AssertionError(losses)
Example #3
0
    def wtest_ort_gradient_optimizers_binary(self, use_weight=False):
        from onnxcustom.utils.orttraining_helper import add_loss_output
        from onnxcustom.training.optimizers import OrtGradientOptimizer
        X, y = make_classification(  # pylint: disable=W0632
            100, n_features=10, random_state=0)
        X = X.astype(numpy.float32)
        y = y.astype(numpy.int64)
        w = (numpy.random.rand(X.shape[0]) + 1).astype(numpy.float32)
        X_train, _, y_train, __, w_train, ___ = train_test_split(X, y, w)
        reg = SGDClassifier(loss='log')
        reg.fit(X_train, y_train)
        onx = to_onnx(reg,
                      X_train,
                      target_opset=opset,
                      black_op={'LinearClassifier'},
                      options={'zipmap': False})
        onx2 = load_onnx(BytesIO(onx.SerializeToString()))
        set_model_props(onx, {'info': 'unit test'})
        onx_loss = add_loss_output(
            onx,
            'log',
            output_index=1,
            weight_name='weight' if use_weight else None)
        inits = ['intercept', 'coef']
        inputs = onx_loss.graph.input
        self.assertEqual(len(inputs), 3 if use_weight else 2)
        dt = inputs[1].type.tensor_type.elem_type
        self.assertEqual(TensorProto.INT64, dt)  # pylint: disable=E1101
        train_session = OrtGradientOptimizer(onx_loss,
                                             inits,
                                             learning_rate=1e-3)
        self.assertRaise(lambda: train_session.get_state(), AttributeError)
        if use_weight:
            train_session.fit(X_train,
                              y_train.reshape((-1, 1)),
                              w_train.reshape((-1, 1)),
                              use_numpy=False)
        else:
            train_session.fit(X_train,
                              y_train.reshape((-1, 1)),
                              use_numpy=False)
        state_tensors = train_session.get_state()
        self.assertEqual(len(state_tensors), 2)
        r = repr(train_session)
        self.assertIn("OrtGradientOptimizer(model_onnx=", r)
        self.assertIn("learning_rate='invscaling'", r)
        losses = train_session.train_losses_
        self.assertGreater(len(losses), 1)
        self.assertFalse(any(map(numpy.isnan, losses)))

        # get_trained_weight
        trained_onnx = train_session.get_trained_onnx(model=onx2)
        sess = InferenceSession(onx2.SerializeToString(),
                                providers=['CPUExecutionProvider'])
        got1 = sess.run(None, {'X': X_train})
        sess = InferenceSession(trained_onnx.SerializeToString(),
                                providers=['CPUExecutionProvider'])
        got2 = sess.run(None, {'X': X_train})
        self.assertEqual(len(got1), len(got2))
        self.assertEqual(got1[0].shape, got2[0].shape)

        # state
        state = train_session.get_state()
        self.assertIsInstance(state, dict)
        train_session.set_state(state)