def valid_acc(sess, valid_x, y): div = y.shape[0] count = 0 for i in range(div): temp_x = valid_x[i] #print (temp_x.shape) rotate90 = np.array(op.rotate18(temp_x, 90)) rotate180 = np.array(op.rotate18(temp_x, 180)) rotate270 = np.array(op.rotate18(temp_x, 270)) fin_x = np.concatenate([temp_x, rotate90, rotate180, rotate270], axis=0) fin_x = fin_x.reshape(-1, 32, 32, 18) #print (fin_x.shape) y_ = sess.run(pred_number, feed_dict={ x: fin_x, keep_prob: 1.0, is_training: False }) y_ = np.argmax(np.bincount(y_)) label = np.argmax(y[i]) if (y_ == label): count = count + 1 return count / div
y_ = graph.get_tensor_by_name("conv/dense_2/BiasAdd:0") loss = graph.get_tensor_by_name("conv_1/Mean:0") #train=graph.get_operation_by_name("conv_1/Adam:0") pred_number = graph.get_tensor_by_name("ArgMax:0") #data IO path = '..\\dataset\\round1_test_a_20181109.h5' h = h5py.File(path, 'r') sen2 = h['sen2'].value num = sen2.shape[0] ans = np.zeros((num, 17)) for i in range(num): img = sen2[i] img_90 = np.array(op.rotate18(img, 90, channle=10)) img_180 = np.array(op.rotate18(img, 180, channle=10)) img_270 = np.array(op.rotate18(img, 270, channle=10)) fin_img = np.concatenate([img, img_90, img_180, img_270], axis=0) fin_img = fin_img.reshape(-1, 32, 32, 10) y_ = sess.run(pred_number, feed_dict={x: fin_img, keep_prob: 1.0}) y_ = np.argmax(np.bincount(y_)) ans[i][y_] = 1 np.savetxt("round1_test_a_20181109.csv", ans, delimiter=',')