def test_affinity_with_precomputed_neighbors(self): nn = NearestNeighbors(n_neighbors=30) nn.fit(self.x) distances, neighbors = nn.kneighbors(n_neighbors=30) knn_index = nearest_neighbors.PrecomputedNeighbors( neighbors, distances) init = initialization.random(self.x, random_state=0) for aff in [ affinity.PerplexityBasedNN(knn_index=knn_index, perplexity=30), affinity.Uniform(knn_index=knn_index, k_neighbors=30), affinity.FixedSigmaNN(knn_index=knn_index, sigma=1), affinity.Multiscale(knn_index=knn_index, perplexities=[10, 20]), affinity.MultiscaleMixture(knn_index=knn_index, perplexities=[10, 20]), ]: # Without initilization embedding = TSNE().fit(affinities=aff) self.eval_embedding(embedding, self.y, aff.__class__.__name__) # With initilization embedding = TSNE().fit(affinities=aff, initialization=init) self.eval_embedding(embedding, self.y, aff.__class__.__name__)
def test_affinity(self): init = initialization.random(self.x, random_state=0) for aff in [ affinity.PerplexityBasedNN(self.x, perplexity=30), affinity.Uniform(self.x, k_neighbors=30), affinity.FixedSigmaNN(self.x, sigma=1, k=30), affinity.Multiscale(self.x, perplexities=[10, 30]), affinity.MultiscaleMixture(self.x, perplexities=[10, 30]), ]: # Without initilization embedding = TSNE().fit(affinities=aff) self.eval_embedding(embedding, self.y, aff.__class__.__name__) new_embedding = embedding.prepare_partial(self.x) new_embedding.optimize(10, learning_rate=0.1, inplace=True) self.eval_embedding(new_embedding, self.y, f"transform::{aff.__class__.__name__}") # With initilization embedding = TSNE().fit(affinities=aff, initialization=init) self.eval_embedding(embedding, self.y, aff.__class__.__name__) new_embedding = embedding.prepare_partial(self.x) new_embedding.optimize(10, learning_rate=0.1, inplace=True) self.eval_embedding(new_embedding, self.y, f"transform::{aff.__class__.__name__}")
def test_affinity_with_precomputed_distances(self): d = squareform(pdist(self.x)) knn_index = nearest_neighbors.PrecomputedDistanceMatrix(d, k=30) init = initialization.random(self.x, random_state=0) for aff in [ affinity.PerplexityBasedNN(knn_index=knn_index, perplexity=30), affinity.Uniform(knn_index=knn_index, k_neighbors=30), affinity.FixedSigmaNN(knn_index=knn_index, sigma=1), affinity.Multiscale(knn_index=knn_index, perplexities=[10, 20]), affinity.MultiscaleMixture(knn_index=knn_index, perplexities=[10, 20]), ]: # Without initilization embedding = TSNE().fit(affinities=aff) self.eval_embedding(embedding, aff.__class__.__name__) # With initilization embedding = TSNE().fit(affinities=aff, initialization=init) self.eval_embedding(embedding, aff.__class__.__name__)