Example #1
0
def run_test_min_edge(min_edge_weight, nb_clusters):
    # create instance
    instance = create_instance(min_edge_weight)
    separated_nodes = [
        node
        for node in ['node_16', 'node_65', 'node_39', 'node_57', 'node_68']
        if node in instance.get_all_nodes()
    ]
    min_cluster_weight = int(instance.total_exchanges() / nb_clusters * 0.25)
    # create model and solve
    model = LSModel(instance,
                    nb_clusters=nb_clusters,
                    separated_nodes=separated_nodes,
                    min_cluster_weight=min_cluster_weight)
    model.solve()
    model.print_solution()
    instance.print_kpis()
    # save instance with solution
    instance.set_solution(model.solution)
    instance.save('instance_min_edge_weight_{}_w_{}_clusters.pickle'.format(
        min_edge_weight, nb_clusters))
    # save a graphical representation of the solution
    display_graph(
        instance, 'solution_min_edge_weight_{}_w_{}_clusters.png'.format(
            min_edge_weight, nb_clusters))
    def test_redraw_solutions(self):
        instances = {}
        for w in [1, 20]:  # [1, 5, 10, 20]:
            instances[w] = {}
            for c in [5, 8]:

                instance_name = 'instance_min_w_{}_max_c_{}'.format(w, c)
                pickle_path = str(current_path) \
                              + '/../openbackend_clustering/resources/{}.pickle'.format(instance_name)
                parser = InstancePickleParser(pickle_path)
                instance = parser.create_instance()
                instance.compress_solution()
                instances[w][c] = instance

        logging.info('self = [w == 20] and [c == 8]')
        logging.info('other  = [w == 20] and [c == 5]')
        instances[20][8].compare_solutions(instances[20][5])

        logging.info('self  = [w == 20] and [c == 8] ')
        logging.info('other = [w == 1] and [c == 8]')
        instances[20][8].compare_solutions(instances[1][8])

        logging.info('self  = [w == 20] and [c == 5]')
        logging.info('other = [w == 1] and [c == 5]')
        instances[20][5].compare_solutions(instances[1][5])

        for w in [1, 20]:  # [1, 5, 10, 20]:
            for c in [5, 8]:
                instance_name = 'instance_min_w_{}_max_c_{}'.format(w, c)
                logging.info('kpis for instance: {}'.format(instance_name))
                instances[w][c].print_kpis()
                display_graph(instances[w][c], '{}.png'.format(instance_name), graph_rad=6 if w == 1 else 5)
Example #3
0
    def _experimentation_plan(self, separated_nodes_plan, nb_clusters_plan,
                              optimize_min_cluster_weight_plan,
                              min_cluster_weight_plan, ignore_plan, path,
                              parser_class):

        plan_nb = 0
        parser = parser_class(path)

        for separated_nodes, nb_clusters, optimize_min_cluster_weight, min_cluster_weight, ignore in \
                itertools.product(separated_nodes_plan, nb_clusters_plan, optimize_min_cluster_weight_plan,
                                  min_cluster_weight_plan, ignore_plan):
            if separated_nodes and nb_clusters < 5:
                continue
            if optimize_min_cluster_weight and min_cluster_weight is not None:
                continue
            file_name = 'sep[{}]-nb[{}]-opt_min[{}]-min_w[{}]-ignore[{}]'.format(
                len(separated_nodes) != 0, nb_clusters,
                optimize_min_cluster_weight, min_cluster_weight, len(ignore))

            instance = parser.create_instance(ignore=ignore)
            min_cluster_weight = None if min_cluster_weight is None \
                else int(instance.total_exchanges() / nb_clusters * min_cluster_weight)

            plan_nb += 1
            logging.info('plan nb: {}'.format(plan_nb))
            logging.info(' - separated_nodes: {}'.format(separated_nodes))
            logging.info(' - nb_clusters: {}'.format(nb_clusters))
            logging.info(' - optimize_min_cluster_weight: {}'.format(
                optimize_min_cluster_weight))
            logging.info(
                ' - min_cluster_weight: {}'.format(min_cluster_weight))
            logging.info(' - ignore: {}'.format(ignore))
            logging.info(' - file_name: {}'.format(file_name))

            model = LSModel(
                instance,
                nb_clusters=nb_clusters,
                separated_nodes=separated_nodes,
                force_nb_clusters=True,
                min_cluster_weight=min_cluster_weight,
                optimize_min_cluster_weight=optimize_min_cluster_weight)
            model.solve()
            if model.infeasible:
                logging.info('NOT FEASIBLE')
                continue
            model.print_solution()
            instance.print_kpis()
            # save instance with solution
            instance.set_solution(model.solution)
            instance.save('{}.pickle'.format(file_name))
            # save graphical representation of the solution
            display_graph(instance, '{}.png'.format(file_name))
Example #4
0
 def test_model_matrix_instance_3(self):
     model = LSModel(self.instance_3, nb_clusters=3)
     model.solve()
     model.print_solution()
     self.instance_3.print_kpis()
     # save instance with solution
     self.instance_3.set_solution(model.solution)
     self.instance_3.save('instance_3.pickle')
     # load saved instance and check if equality holds
     parser = InstancePickleParser('instance_3.pickle')
     pickled_instance = parser.create_instance()
     self.assertEqual(self.instance_3, pickled_instance)
     # save a graphical representation of the solution
     display_graph(self.instance_3, 'solution_instance_3.png')
Example #5
0
 def test_model_matrix_instance_5(self):
     model = LSModel(self.instance_5,
                     nb_clusters=5,
                     separated_nodes=['node_0', 'node_4'],
                     min_cluster_size=2)
     model.solve()
     model.print_solution()
     self.instance_5.print_kpis()
     # save instance with solution
     self.instance_5.set_solution(model.solution)
     self.instance_5.save('instance_5.pickle')
     # load saved instance and check if equality holds
     parser = InstancePickleParser('instance_5.pickle')
     pickled_instance = parser.create_instance()
     self.assertEqual(self.instance_5, pickled_instance)
     # save a graphical representation of the solution
     display_graph(self.instance_5, 'solution_instance_5.png')
Example #6
0
 def test_load_instance_results(self):
     parser = InstancePickleParser('instance.pickle')
     pickled_instance = parser.create_instance()
     # save a graphical representation of the solution
     display_graph(pickled_instance, 'solution_instance_pickle.png')
     pickled_instance.print_kpis()