def run_test(): print('===== Test Start =====') # Define Search Space space = sp.Space() x1 = sp.Real("x1", -5, 10, default_value=0) x2 = sp.Real("x2", 0, 15, default_value=0) space.add_variables([x1, x2]) # Run try: max_runs = 10 opt = Optimizer( branin, space, max_runs=max_runs, time_limit_per_trial=30, task_id='test_install', ) history = opt.run() except Exception: print(traceback.format_exc()) print('===== Exception in run_test()! Please check. =====') else: cnt = history.trial_states.count(SUCCESS) if cnt == max_runs: print('===== Congratulations! All trials succeeded. =====') else: print('===== %d/%d trials failed! Please check. =====' % (max_runs - cnt, max_runs))
result = dict() result['objs'] = [ t1 + t2 + t3, ] result['constraints'] = [ np.sum((X + 5)**2) - 25, ] return result if __name__ == "__main__": params = {'float': {'x0': (-10, 0, -5), 'x1': (-6.5, 0, -3.25)}} space = sp.Space() space.add_variables( [sp.Real(name, *para) for name, para in params['float'].items()]) opt = Optimizer( mishra, space, num_constraints=1, num_objs=1, surrogate_type='gp', acq_optimizer_type='random_scipy', max_runs=50, time_limit_per_trial=10, task_id='soc', ) history = opt.run() print(history)
# License: MIT import numpy as np import matplotlib.pyplot as plt from openbox import Advisor, sp, Observation # Define Search Space space = sp.Space() x1 = sp.Real("x1", -5, 10, default_value=0) x2 = sp.Real("x2", 0, 15, default_value=0) space.add_variables([x1, x2]) # Define Objective Function def branin(config): x1, x2 = config['x1'], config['x2'] y = (x2 - 5.1 / (4 * np.pi ** 2) * x1 ** 2 + 5 / np.pi * x1 - 6) ** 2 \ + 10 * (1 - 1 / (8 * np.pi)) * np.cos(x1) + 10 return {'objs': (y, )} # Run if __name__ == "__main__": advisor = Advisor( space, # surrogate_type='gp', surrogate_type='auto', task_id='quick_start', ) MAX_RUNS = 50
px2 = 15 * x2 f1 = (px2 - 5.1 / (4 * np.pi ** 2) * px1 ** 2 + 5 / np.pi * px1 - 6) ** 2 \ + 10 * (1 - 1 / (8 * np.pi)) * np.cos(px1) + 10 f2 = (1 - np.exp(-1 / (2 * x2))) * (2300 * x1 ** 3 + 1900 * x1 ** 2 + 2092 * x1 + 60) \ / (100 * x1 ** 3 + 500 * x1 ** 2 + 4 * x1 + 20) result = dict() result['objs'] = [f1, f2] return result if __name__ == "__main__": # search space space = sp.Space() x1 = sp.Real("x1", 0, 1) x2 = sp.Real("x2", 0, 1) space.add_variables([x1, x2]) # provide reference point if using EHVI method ref_point = [18.0, 6.0] # run opt = Optimizer( BraninCurrin, space, num_objs=2, num_constraints=0, max_runs=50, surrogate_type='gp', acq_type='ehvi',
obj1 = x1 obj2 = (1.0 + x2) / x1 c1 = 6.0 - 9.0 * x1 - x2 c2 = 1.0 - 9.0 * x1 + x2 result = dict() result['objs'] = [obj1, obj2] result['constraints'] = [c1, c2] return result if __name__ == "__main__": # search space space = sp.Space() x1 = sp.Real("x1", 0.1, 10.0) x2 = sp.Real("x2", 0.0, 5.0) space.add_variables([x1, x2]) # provide reference point if using EHVI method ref_point = [10.0, 10.0] # run opt = Optimizer( CONSTR, space, num_objs=2, num_constraints=2, max_runs=20, surrogate_type='gp', acq_type='ehvic',