Example #1
0
def string2config_space(space_desc: str):
    line_list = space_desc.split('\n')
    cur_line = 2
    cs = ConfigurationSpace()
    status = 'hp'
    hp_list = list()
    while cur_line != len(line_list) - 1:
        line_content = line_list[cur_line]
        if line_content == '  Conditions:':
            hp_dict = {hp.name: hp for hp in hp_list}
            status = 'cond'
        elif line_content == '  Forbidden Clauses:':
            status = 'bid'
        else:
            if status == 'hp':
                hp = string2hyperparameter(line_content)
                hp_list.append(hp)
                cs.add_hyperparameter(hp)
            elif status == 'cond':
                cond = string2condition(line_content, hp_dict)
                cs.add_condition(cond)
            else:
                forbid = string2forbidden(line_content, hp_dict)
                cs.add_forbidden_clause(forbid)
        cur_line += 1
    return cs
Example #2
0
    def get_configspace(self):
        hp_num = self._hp_cnt + self._delta
        if hp_num > self.hp_size:
            hp_num = self.hp_size

        hps = self.config_space.get_hyperparameters()
        cs = ConfigurationSpace()
        for _id in range(hp_num):
            _hp_id = self.importance_list[_id]
            for _hp in hps:
                if _hp.name == _hp_id:
                    cs.add_hyperparameter(_hp)

        history_list = list()
        if len(self.history_dict.keys()) > 0 and self._hp_cnt < self.hp_size:
            for _config in self.history_dict.keys():
                # Impute the default value for new hyperparameter.
                _config_dict = _config.get_dictionary().copy()
                for _idx in range(self._hp_cnt, hp_num):
                    new_hp = self.importance_list[_idx]
                    # print('hp_num=', self._hp_cnt, 'new hp is', new_hp)
                    _config_dict[new_hp] = self.defaults[new_hp]
                history_list.append((_config_dict, self.history_dict[_config]))
        if len(history_list) == 0:
            history_list = [(_config, self.history_dict[_config])
                            for _config in self.history_dict.keys()]
        return cs, history_list
Example #3
0
 def __init__(self, bounds=None, noise_std=0, random_state=None):
     if bounds is None:
         bounds = [0, 20]
     lb, ub = bounds
     config_space = ConfigurationSpace()
     config_space.add_hyperparameter(UniformFloatHyperparameter('x1', lb, ub, 1))
     config_space.add_hyperparameter(UniformIntegerHyperparameter('x2', lb, ub, 1))
     super().__init__(config_space, noise_std,
                      optimal_value=-31.9998,
                      optimal_point=[(5.333, 4)],
                      random_state=random_state)
Example #4
0
def get_config_space_from_dict(space_dict: dict):
    cs = ConfigurationSpace()
    params_dict = space_dict['parameters']
    for key in params_dict:
        param_dict = params_dict[key]
        param_type = param_dict['type']
        if param_type in ['float', 'int']:
            bound = param_dict['bound']
            optional_args = dict()
            if 'default' in param_dict:
                optional_args['default_value'] = param_dict['default']
            if 'log' in param_dict:
                optional_args['log'] = parse_bool(param_dict['log'])
            if 'q' in param_dict:
                optional_args['q'] = param_dict['q']

            if param_type == 'float':
                param = UniformFloatHyperparameter(key, bound[0], bound[1], **optional_args)
            else:
                param = UniformIntegerHyperparameter(key, bound[0], bound[1], **optional_args)

        elif param_type == 'cat':
            choices = param_dict['choice']
            optional_args = dict()
            if 'default' in param_dict:
                optional_args['default_value'] = param_dict['default']
            param = CategoricalHyperparameter(key, choices, **optional_args)

        elif param_type == 'const':
            value = param_dict['value']
            param = Constant(key, value)

        else:
            raise ValueError("Parameter type %s not supported!" % param_type)

        cs.add_hyperparameter(param)
    return cs
Example #5
0
    clf = svm.SVC(**cfg, random_state=42)
    scores = cross_val_score(clf, iris.data, iris.target, cv=5)
    return 1 - np.mean(scores)  # Minimize!


logging.basicConfig(level=logging.INFO)

# Build Configuration Space which defines all parameters and their ranges
cs = ConfigurationSpace()

# We define a few possible types of SVM-kernels and add them as "kernel" to our cs
kernel = CategoricalHyperparameter("kernel",
                                   ["linear", "rbf", "poly", "sigmoid"],
                                   default_value="poly")
cs.add_hyperparameter(kernel)

# There are some hyperparameters shared by all kernels
C = UniformFloatHyperparameter("C", 0.001, 1000.0, default_value=1.0)
shrinking = CategoricalHyperparameter("shrinking", ["true", "false"],
                                      default_value="true")
cs.add_hyperparameters([C, shrinking])

# Others are kernel-specific, so we can add conditions to limit the searchspace
degree = UniformIntegerHyperparameter(
    "degree", 1, 5, default_value=3)  # Only used by kernel poly
coef0 = UniformFloatHyperparameter("coef0", 0.0, 10.0,
                                   default_value=0.0)  # poly, sigmoid
cs.add_hyperparameters([degree, coef0])
use_degree = InCondition(child=degree, parent=kernel, values=["poly"])
use_coef0 = InCondition(child=coef0, parent=kernel, values=["poly", "sigmoid"])