Example #1
0
materialsField = iron.Field()
equationsSet.MaterialsCreateStart(materialsFieldUserNumber, materialsField)
equationsSet.MaterialsCreateFinish()

# Set the materials values
# Set Am
materialsField.ComponentValuesInitialise(iron.FieldVariableTypes.U,iron.FieldParameterSetTypes.VALUES,1,Am)
# Set Cm
materialsField.ComponentValuesInitialise(iron.FieldVariableTypes.U,iron.FieldParameterSetTypes.VALUES,2,Cm)
# Set conductivity
materialsField.ComponentValuesInitialise(iron.FieldVariableTypes.U,iron.FieldParameterSetTypes.VALUES,3,conductivity)
#DOC-END equations set fields

#DOC-START create cellml environment
# Create the CellML environment
cellML = iron.CellML()
cellML.CreateStart(cellMLUserNumber, region)
# Import a Nobel 98 cell model from a file
noble98Model = cellML.ModelImport(modelFile)
#DOC-END create cellml environment

#DOC-START flag variables
# Now we have imported the model we are able to specify which variables from the model we want to set from openCMISS
cellML.VariableSetAsKnown(noble98Model, "fast_sodium_current/g_Na")
cellML.VariableSetAsKnown(noble98Model, "membrane/IStim")
# and variables to get from the CellML 
cellML.VariableSetAsWanted(noble98Model, "membrane/i_K1")
cellML.VariableSetAsWanted(noble98Model, "membrane/i_to")
cellML.VariableSetAsWanted(noble98Model, "membrane/i_K")
cellML.VariableSetAsWanted(noble98Model, "membrane/i_K_ATP")
cellML.VariableSetAsWanted(noble98Model, "membrane/i_Ca_L_K")
Example #2
0
def simulate(fibreAngleIn, materialParameters):
    '''
    Main function to run a finite elasticity simulation using OpenCMISS with a unit cube and the Guccione material law (in CellML).
    fibreAngle is a scalar angle in degrees
    materialParameters is a list of the four Guccione material parameters. 
    '''
    # Set problem parameters - Unit cube
    height = 1.0
    width = 1.0
    length = 1.0

    #     if len(sys.argv) != 2:
    #         usage(sys.argv[0])
    #         exit(-1)

    fa = fibreAngleIn
    print("fa = " + str(fa))

    # Fibre angles in radians:
    fibreAngle = fa * pi / 180.0
    # (transversly isotropic, so assume 0 cross-fibre angle?)
    sheetAngle = 90.0 * pi / 180.0
    fibreAngles = [fibreAngle, 0.0, sheetAngle]

    # Guccione constitutive relation:
    constitutiveRelation = iron.EquationsSetSubtypes.CONSTITUTIVE_LAW_IN_CELLML_EVALUATE
    constitutiveParameters = [0.88, 18.5, 3.58, 3.26]
    constitutiveParameters = materialParameters
    initialHydrostaticPressure = 0.0

    UsePressureBasis = False
    NumberOfGaussXi = 2

    coordinateSystemUserNumber = 1
    regionUserNumber = 1
    basisUserNumber = 1
    pressureBasisUserNumber = 2
    generatedMeshUserNumber = 1
    meshUserNumber = 1
    decompositionUserNumber = 1
    geometricFieldUserNumber = 1
    fibreFieldUserNumber = 2
    materialFieldUserNumber = 3
    dependentFieldUserNumber = 4
    equationsSetFieldUserNumber = 5
    deformedFieldUserNumber = 6
    equationsSetUserNumber = 1
    problemUserNumber = 1

    CellMLUserNumber = 1
    CellMLModelsFieldUserNumber = 7
    CellMLParametersFieldUserNumber = 8
    CellMLIntermediateFieldUserNumber = 9

    # Set all diganostic levels on for testing
    #iron.DiagnosticsSetOn(iron.DiagnosticTypes.ALL,[1,2,3,4,5],"Diagnostics",["DOMAIN_MAPPINGS_LOCAL_FROM_GLOBAL_CALCULATE"])

    numberGlobalXElements = 1
    numberGlobalYElements = 1
    numberGlobalZElements = 1
    totalNumberOfNodes = 8
    totalNumberOfElements = 1
    InterpolationType = 1
    if (UsePressureBasis):
        numberOfMeshComponents = 2
    else:
        numberOfMeshComponents = 1
    if (numberGlobalZElements == 0):
        numberOfXi = 2
    else:
        numberOfXi = 3

    # Get the number of computational nodes and this computational node number
    numberOfComputationalNodes = iron.ComputationalNumberOfNodesGet()
    computationalNodeNumber = iron.ComputationalNodeNumberGet()

    # Create a 3D rectangular cartesian coordinate system
    coordinateSystem = iron.CoordinateSystem()
    coordinateSystem.CreateStart(coordinateSystemUserNumber)
    coordinateSystem.DimensionSet(3)
    coordinateSystem.CreateFinish()

    # Create a region and assign the coordinate system to the region
    region = iron.Region()
    region.CreateStart(regionUserNumber, iron.WorldRegion)
    region.LabelSet("Region")
    region.coordinateSystem = coordinateSystem
    region.CreateFinish()

    # Define basis
    basis = iron.Basis()
    basis.CreateStart(basisUserNumber)
    if InterpolationType in (1, 2, 3, 4):
        basis.type = iron.BasisTypes.LAGRANGE_HERMITE_TP
    elif InterpolationType in (7, 8, 9):
        basis.type = iron.BasisTypes.SIMPLEX
    basis.numberOfXi = numberOfXi
    basis.interpolationXi = [
        iron.BasisInterpolationSpecifications.LINEAR_LAGRANGE
    ] * numberOfXi
    if (NumberOfGaussXi > 0):
        basis.quadratureNumberOfGaussXi = [NumberOfGaussXi] * numberOfXi
    basis.CreateFinish()

    if (UsePressureBasis):
        # Define pressure basis
        pressureBasis = iron.Basis()
        pressureBasis.CreateStart(pressureBasisUserNumber)
        if InterpolationType in (1, 2, 3, 4):
            pressureBasis.type = iron.BasisTypes.LAGRANGE_HERMITE_TP
        elif InterpolationType in (7, 8, 9):
            pressureBasis.type = iron.BasisTypes.SIMPLEX
        pressureBasis.numberOfXi = numberOfXi
        pressureBasis.interpolationXi = [
            iron.BasisInterpolationSpecifications.LINEAR_LAGRANGE
        ] * numberOfXi
        if (NumberOfGaussXi > 0):
            pressureBasis.quadratureNumberOfGaussXi = [NumberOfGaussXi
                                                       ] * numberOfXi
        pressureBasis.CreateFinish()

    # Start the creation of a manually generated mesh in the region
    mesh = iron.Mesh()
    mesh.CreateStart(meshUserNumber, region, numberOfXi)
    mesh.NumberOfComponentsSet(numberOfMeshComponents)
    mesh.NumberOfElementsSet(totalNumberOfElements)

    #Define nodes for the mesh
    nodes = iron.Nodes()
    nodes.CreateStart(region, totalNumberOfNodes)
    nodes.CreateFinish()

    elements = iron.MeshElements()
    meshComponentNumber = 1
    elements.CreateStart(mesh, meshComponentNumber, basis)
    elements.NodesSet(1, [1, 2, 3, 4, 5, 6, 7, 8])
    elements.CreateFinish()

    mesh.CreateFinish()

    # Create a decomposition for the mesh
    decomposition = iron.Decomposition()
    decomposition.CreateStart(decompositionUserNumber, mesh)
    decomposition.type = iron.DecompositionTypes.CALCULATED
    decomposition.numberOfDomains = numberOfComputationalNodes
    decomposition.CreateFinish()

    # Create a field for the geometry
    geometricField = iron.Field()
    geometricField.CreateStart(geometricFieldUserNumber, region)
    geometricField.MeshDecompositionSet(decomposition)
    geometricField.TypeSet(iron.FieldTypes.GEOMETRIC)
    geometricField.VariableLabelSet(iron.FieldVariableTypes.U, "Geometry")
    geometricField.ComponentMeshComponentSet(iron.FieldVariableTypes.U, 1, 1)
    geometricField.ComponentMeshComponentSet(iron.FieldVariableTypes.U, 2, 1)
    geometricField.ComponentMeshComponentSet(iron.FieldVariableTypes.U, 3, 1)
    if InterpolationType == 4:
        geometricField.fieldScalingType = iron.FieldScalingTypes.ARITHMETIC_MEAN
    geometricField.CreateFinish()

    # Update the geometric field parameters manually
    geometricField.ParameterSetUpdateStart(iron.FieldVariableTypes.U,
                                           iron.FieldParameterSetTypes.VALUES)
    # node 1
    geometricField.ParameterSetUpdateNodeDP(iron.FieldVariableTypes.U,
                                            iron.FieldParameterSetTypes.VALUES,
                                            1, 1, 1, 1, 0.0)
    geometricField.ParameterSetUpdateNodeDP(iron.FieldVariableTypes.U,
                                            iron.FieldParameterSetTypes.VALUES,
                                            1, 1, 1, 2, 0.0)
    geometricField.ParameterSetUpdateNodeDP(iron.FieldVariableTypes.U,
                                            iron.FieldParameterSetTypes.VALUES,
                                            1, 1, 1, 3, 0.0)
    # node 2
    geometricField.ParameterSetUpdateNodeDP(iron.FieldVariableTypes.U,
                                            iron.FieldParameterSetTypes.VALUES,
                                            1, 1, 2, 1, height)
    geometricField.ParameterSetUpdateNodeDP(iron.FieldVariableTypes.U,
                                            iron.FieldParameterSetTypes.VALUES,
                                            1, 1, 2, 2, 0.0)
    geometricField.ParameterSetUpdateNodeDP(iron.FieldVariableTypes.U,
                                            iron.FieldParameterSetTypes.VALUES,
                                            1, 1, 2, 3, 0.0)
    # node 3
    geometricField.ParameterSetUpdateNodeDP(iron.FieldVariableTypes.U,
                                            iron.FieldParameterSetTypes.VALUES,
                                            1, 1, 3, 1, 0.0)
    geometricField.ParameterSetUpdateNodeDP(iron.FieldVariableTypes.U,
                                            iron.FieldParameterSetTypes.VALUES,
                                            1, 1, 3, 2, width)
    geometricField.ParameterSetUpdateNodeDP(iron.FieldVariableTypes.U,
                                            iron.FieldParameterSetTypes.VALUES,
                                            1, 1, 3, 3, 0.0)
    # node 4
    geometricField.ParameterSetUpdateNodeDP(iron.FieldVariableTypes.U,
                                            iron.FieldParameterSetTypes.VALUES,
                                            1, 1, 4, 1, height)
    geometricField.ParameterSetUpdateNodeDP(iron.FieldVariableTypes.U,
                                            iron.FieldParameterSetTypes.VALUES,
                                            1, 1, 4, 2, width)
    geometricField.ParameterSetUpdateNodeDP(iron.FieldVariableTypes.U,
                                            iron.FieldParameterSetTypes.VALUES,
                                            1, 1, 4, 3, 0.0)
    # node 5
    geometricField.ParameterSetUpdateNodeDP(iron.FieldVariableTypes.U,
                                            iron.FieldParameterSetTypes.VALUES,
                                            1, 1, 5, 1, 0.0)
    geometricField.ParameterSetUpdateNodeDP(iron.FieldVariableTypes.U,
                                            iron.FieldParameterSetTypes.VALUES,
                                            1, 1, 5, 2, 0.0)
    geometricField.ParameterSetUpdateNodeDP(iron.FieldVariableTypes.U,
                                            iron.FieldParameterSetTypes.VALUES,
                                            1, 1, 5, 3, length)
    # node 6
    geometricField.ParameterSetUpdateNodeDP(iron.FieldVariableTypes.U,
                                            iron.FieldParameterSetTypes.VALUES,
                                            1, 1, 6, 1, height)
    geometricField.ParameterSetUpdateNodeDP(iron.FieldVariableTypes.U,
                                            iron.FieldParameterSetTypes.VALUES,
                                            1, 1, 6, 2, 0.0)
    geometricField.ParameterSetUpdateNodeDP(iron.FieldVariableTypes.U,
                                            iron.FieldParameterSetTypes.VALUES,
                                            1, 1, 6, 3, length)
    # node 7
    geometricField.ParameterSetUpdateNodeDP(iron.FieldVariableTypes.U,
                                            iron.FieldParameterSetTypes.VALUES,
                                            1, 1, 7, 1, 0.0)
    geometricField.ParameterSetUpdateNodeDP(iron.FieldVariableTypes.U,
                                            iron.FieldParameterSetTypes.VALUES,
                                            1, 1, 7, 2, width)
    geometricField.ParameterSetUpdateNodeDP(iron.FieldVariableTypes.U,
                                            iron.FieldParameterSetTypes.VALUES,
                                            1, 1, 7, 3, length)
    # node 8
    geometricField.ParameterSetUpdateNodeDP(iron.FieldVariableTypes.U,
                                            iron.FieldParameterSetTypes.VALUES,
                                            1, 1, 8, 1, height)
    geometricField.ParameterSetUpdateNodeDP(iron.FieldVariableTypes.U,
                                            iron.FieldParameterSetTypes.VALUES,
                                            1, 1, 8, 2, width)
    geometricField.ParameterSetUpdateNodeDP(iron.FieldVariableTypes.U,
                                            iron.FieldParameterSetTypes.VALUES,
                                            1, 1, 8, 3, length)
    geometricField.ParameterSetUpdateFinish(iron.FieldVariableTypes.U,
                                            iron.FieldParameterSetTypes.VALUES)

    # Create a fibre field and attach it to the geometric field
    fibreField = iron.Field()
    fibreField.CreateStart(fibreFieldUserNumber, region)
    fibreField.TypeSet(iron.FieldTypes.FIBRE)
    fibreField.MeshDecompositionSet(decomposition)
    fibreField.GeometricFieldSet(geometricField)
    fibreField.VariableLabelSet(iron.FieldVariableTypes.U, "Fibre")
    if InterpolationType == 4:
        fibreField.fieldScalingType = iron.FieldScalingTypes.ARITHMETIC_MEAN
    fibreField.CreateFinish()

    iron.Field.ComponentValuesInitialiseDP(fibreField,
                                           iron.FieldVariableTypes.U,
                                           iron.FieldParameterSetTypes.VALUES,
                                           1, fibreAngle)
    iron.Field.ComponentValuesInitialiseDP(fibreField,
                                           iron.FieldVariableTypes.U,
                                           iron.FieldParameterSetTypes.VALUES,
                                           2, 0.0)
    iron.Field.ComponentValuesInitialiseDP(fibreField,
                                           iron.FieldVariableTypes.U,
                                           iron.FieldParameterSetTypes.VALUES,
                                           3, sheetAngle)

    # # Create the material field
    # materialField = iron.Field()
    # materialField.CreateStart(materialFieldUserNumber,region)
    # materialField.TypeSet(iron.FieldTypes.MATERIAL)
    # materialField.MeshDecompositionSet(decomposition)
    # materialField.GeometricFieldSet(geometricField)
    # materialField.NumberOfVariablesSet(1)
    # materialField.NumberOfComponentsSet(iron.FieldVariableTypes.U,len(constitutiveParameters))
    # materialField.VariableLabelSet(iron.FieldVariableTypes.U,"Material")
    # materialField.ComponentMeshComponentSet(iron.FieldVariableTypes.U,1,1)
    # materialField.ComponentMeshComponentSet(iron.FieldVariableTypes.U,2,1)
    # if InterpolationType == 4:
    #     materialField.fieldScalingType = iron.FieldScalingTypes.ARITHMETIC_MEAN
    # materialField.CreateFinish()

    # Set constant material parameters:
    # for (component, value) in enumerate(constitutiveParameters, 1):
    #     materialField.ComponentValuesInitialise(
    #             iron.FieldVariableTypes.U, iron.FieldParameterSetTypes.VALUES,
    #             component, value)

    # Create the dependent field
    dependentField = iron.Field()
    dependentField.CreateStart(dependentFieldUserNumber, region)
    dependentField.VariableLabelSet(iron.FieldVariableTypes.U, "Dependent")
    dependentField.TypeSet(iron.FieldTypes.GEOMETRIC_GENERAL)
    dependentField.MeshDecompositionSet(decomposition)
    dependentField.GeometricFieldSet(geometricField)
    dependentField.DependentTypeSet(iron.FieldDependentTypes.DEPENDENT)
    dependentField.NumberOfVariablesSet(4)
    dependentField.VariableTypesSet([
        iron.FieldVariableTypes.U, iron.FieldVariableTypes.DELUDELN,
        iron.FieldVariableTypes.U1, iron.FieldVariableTypes.U2
    ])
    dependentField.NumberOfComponentsSet(iron.FieldVariableTypes.U, 4)
    dependentField.NumberOfComponentsSet(iron.FieldVariableTypes.DELUDELN, 4)
    dependentField.NumberOfComponentsSet(iron.FieldVariableTypes.U1, 6)
    dependentField.NumberOfComponentsSet(iron.FieldVariableTypes.U2, 6)
    dependentField.ComponentMeshComponentSet(iron.FieldVariableTypes.U, 1, 1)
    dependentField.ComponentMeshComponentSet(iron.FieldVariableTypes.U, 2, 1)
    dependentField.ComponentMeshComponentSet(iron.FieldVariableTypes.U, 3, 1)
    dependentField.ComponentMeshComponentSet(iron.FieldVariableTypes.DELUDELN,
                                             1, 1)
    dependentField.ComponentMeshComponentSet(iron.FieldVariableTypes.DELUDELN,
                                             2, 1)
    dependentField.ComponentMeshComponentSet(iron.FieldVariableTypes.DELUDELN,
                                             3, 1)
    dependentField.ComponentMeshComponentSet(iron.FieldVariableTypes.U1, 1, 1)
    dependentField.ComponentMeshComponentSet(iron.FieldVariableTypes.U1, 2, 1)
    dependentField.ComponentMeshComponentSet(iron.FieldVariableTypes.U1, 3, 1)
    dependentField.ComponentMeshComponentSet(iron.FieldVariableTypes.U1, 4, 1)
    dependentField.ComponentMeshComponentSet(iron.FieldVariableTypes.U1, 5, 1)
    dependentField.ComponentMeshComponentSet(iron.FieldVariableTypes.U1, 6, 1)
    dependentField.ComponentMeshComponentSet(iron.FieldVariableTypes.U2, 1, 1)
    dependentField.ComponentMeshComponentSet(iron.FieldVariableTypes.U2, 2, 1)
    dependentField.ComponentMeshComponentSet(iron.FieldVariableTypes.U2, 3, 1)
    dependentField.ComponentMeshComponentSet(iron.FieldVariableTypes.U2, 4, 1)
    dependentField.ComponentMeshComponentSet(iron.FieldVariableTypes.U2, 5, 1)
    dependentField.ComponentMeshComponentSet(iron.FieldVariableTypes.U2, 6, 1)
    dependentField.ComponentInterpolationSet(
        iron.FieldVariableTypes.U, 4,
        iron.FieldInterpolationTypes.ELEMENT_BASED)
    dependentField.ComponentInterpolationSet(
        iron.FieldVariableTypes.DELUDELN, 4,
        iron.FieldInterpolationTypes.ELEMENT_BASED)
    if (UsePressureBasis):
        # Set the pressure to be nodally based and use the second mesh component
        if InterpolationType == 4:
            dependentField.ComponentInterpolationSet(
                iron.FieldVariableTypes.U, 4,
                iron.FieldInterpolationTypes.NODE_BASED)
            dependentField.ComponentInterpolationSet(
                iron.FieldVariableTypes.DELUDELN, 4,
                iron.FieldInterpolationTypes.NODE_BASED)
        dependentField.ComponentMeshComponentSet(iron.FieldVariableTypes.U, 4,
                                                 2)
        dependentField.ComponentMeshComponentSet(
            iron.FieldVariableTypes.DELUDELN, 4, 2)
    if InterpolationType == 4:
        dependentField.fieldScalingType = iron.FieldScalingTypes.ARITHMETIC_MEAN

    dependentField.ComponentInterpolationSet(
        iron.FieldVariableTypes.U1, 1,
        iron.FieldInterpolationTypes.GAUSS_POINT_BASED)
    dependentField.ComponentInterpolationSet(
        iron.FieldVariableTypes.U1, 2,
        iron.FieldInterpolationTypes.GAUSS_POINT_BASED)
    dependentField.ComponentInterpolationSet(
        iron.FieldVariableTypes.U1, 3,
        iron.FieldInterpolationTypes.GAUSS_POINT_BASED)
    dependentField.ComponentInterpolationSet(
        iron.FieldVariableTypes.U1, 4,
        iron.FieldInterpolationTypes.GAUSS_POINT_BASED)
    dependentField.ComponentInterpolationSet(
        iron.FieldVariableTypes.U1, 5,
        iron.FieldInterpolationTypes.GAUSS_POINT_BASED)
    dependentField.ComponentInterpolationSet(
        iron.FieldVariableTypes.U1, 6,
        iron.FieldInterpolationTypes.GAUSS_POINT_BASED)

    dependentField.ComponentInterpolationSet(
        iron.FieldVariableTypes.U2, 1,
        iron.FieldInterpolationTypes.GAUSS_POINT_BASED)
    dependentField.ComponentInterpolationSet(
        iron.FieldVariableTypes.U2, 2,
        iron.FieldInterpolationTypes.GAUSS_POINT_BASED)
    dependentField.ComponentInterpolationSet(
        iron.FieldVariableTypes.U2, 3,
        iron.FieldInterpolationTypes.GAUSS_POINT_BASED)
    dependentField.ComponentInterpolationSet(
        iron.FieldVariableTypes.U2, 4,
        iron.FieldInterpolationTypes.GAUSS_POINT_BASED)
    dependentField.ComponentInterpolationSet(
        iron.FieldVariableTypes.U2, 5,
        iron.FieldInterpolationTypes.GAUSS_POINT_BASED)
    dependentField.ComponentInterpolationSet(
        iron.FieldVariableTypes.U2, 6,
        iron.FieldInterpolationTypes.GAUSS_POINT_BASED)

    dependentField.VariableLabelSet(iron.FieldVariableTypes.U1, "strain")
    dependentField.VariableLabelSet(iron.FieldVariableTypes.U2, "stress")

    dependentField.CreateFinish()

    # Initialise dependent field from undeformed geometry and displacement bcs and set hydrostatic pressure
    iron.Field.ParametersToFieldParametersComponentCopy(
        geometricField, iron.FieldVariableTypes.U,
        iron.FieldParameterSetTypes.VALUES, 1, dependentField,
        iron.FieldVariableTypes.U, iron.FieldParameterSetTypes.VALUES, 1)
    iron.Field.ParametersToFieldParametersComponentCopy(
        geometricField, iron.FieldVariableTypes.U,
        iron.FieldParameterSetTypes.VALUES, 2, dependentField,
        iron.FieldVariableTypes.U, iron.FieldParameterSetTypes.VALUES, 2)
    iron.Field.ParametersToFieldParametersComponentCopy(
        geometricField, iron.FieldVariableTypes.U,
        iron.FieldParameterSetTypes.VALUES, 3, dependentField,
        iron.FieldVariableTypes.U, iron.FieldParameterSetTypes.VALUES, 3)
    iron.Field.ComponentValuesInitialiseDP(dependentField,
                                           iron.FieldVariableTypes.U,
                                           iron.FieldParameterSetTypes.VALUES,
                                           4, -8.0)

    # Create a deformed geometry field, as cmgui doesn't like displaying
    # deformed fibres from the dependent field because it isn't a geometric field.
    deformedField = iron.Field()
    deformedField.CreateStart(deformedFieldUserNumber, region)
    deformedField.MeshDecompositionSet(decomposition)
    deformedField.TypeSet(iron.FieldTypes.GEOMETRIC)
    deformedField.VariableLabelSet(iron.FieldVariableTypes.U,
                                   "DeformedGeometry")
    for component in [1, 2, 3]:
        deformedField.ComponentMeshComponentSet(iron.FieldVariableTypes.U,
                                                component, 1)
    if InterpolationType == 4:
        deformedField.ScalingTypeSet(iron.FieldScalingTypes.ARITHMETIC_MEAN)
    deformedField.CreateFinish()

    # Create the equations_set
    equationsSetField = iron.Field()
    equationsSet = iron.EquationsSet()
    equationsSetSpecification = [
        iron.EquationsSetClasses.ELASTICITY,
        iron.EquationsSetTypes.FINITE_ELASTICITY, constitutiveRelation
    ]
    equationsSet.CreateStart(equationsSetUserNumber, region, fibreField,
                             equationsSetSpecification,
                             equationsSetFieldUserNumber, equationsSetField)
    equationsSet.CreateFinish()

    # Create the CellML environment
    CellML = iron.CellML()
    CellML.CreateStart(CellMLUserNumber, region)

    # here we get the current path of this script so that we can specify the CellML model document relative to
    # this script, rather than the execution folder.
    from os.path import dirname, join
    script_path = dirname(__file__)
    cellmlFile = join(script_path, "guccione.cellml")
    # guccioneCellMLParameters = [0.88, 0.0, 18.5, 3.58, 3.26] # default values in CellML model
    guccioneCellMLParameters = [1.0, 0.0, 5.0, 10.0, 5.0]
    guccioneCellMLParameters = [
        materialParameters[0], 0.0, materialParameters[1],
        materialParameters[2], materialParameters[3]
    ]
    # the names of the variables in the CellML model for the parameters in the same order as the values above
    guccioneCellMLParameterIds = [
        "interface/c1", "interface/c2", "interface/c3", "interface/c4",
        "interface/c5"
    ]
    # Import a Guccione material law from a file
    GuccioneModel = CellML.ModelImport(cellmlFile)
    # Now we have imported the model we are able to specify which variables from the model we want to set from openCMISS
    CellML.VariableSetAsKnown(GuccioneModel, "equations/E11")
    CellML.VariableSetAsKnown(GuccioneModel, "equations/E12")
    CellML.VariableSetAsKnown(GuccioneModel, "equations/E13")
    CellML.VariableSetAsKnown(GuccioneModel, "equations/E22")
    CellML.VariableSetAsKnown(GuccioneModel, "equations/E23")
    CellML.VariableSetAsKnown(GuccioneModel, "equations/E33")
    for component, parameter in enumerate(guccioneCellMLParameterIds):
        CellML.VariableSetAsKnown(GuccioneModel, parameter)
    # and variables to get from the CellML
    CellML.VariableSetAsWanted(GuccioneModel, "equations/Tdev11")
    CellML.VariableSetAsWanted(GuccioneModel, "equations/Tdev12")
    CellML.VariableSetAsWanted(GuccioneModel, "equations/Tdev13")
    CellML.VariableSetAsWanted(GuccioneModel, "equations/Tdev22")
    CellML.VariableSetAsWanted(GuccioneModel, "equations/Tdev23")
    CellML.VariableSetAsWanted(GuccioneModel, "equations/Tdev33")

    CellML.CreateFinish()

    # Start the creation of CellML <--> OpenCMISS field maps
    CellML.FieldMapsCreateStart()
    #Now we can set up the field variable component <--> CellML model variable mappings.
    #Map the strain components
    CellML.CreateFieldToCellMLMap(dependentField, iron.FieldVariableTypes.U1,
                                  1, iron.FieldParameterSetTypes.VALUES,
                                  GuccioneModel, "equations/E11",
                                  iron.FieldParameterSetTypes.VALUES)
    CellML.CreateFieldToCellMLMap(dependentField, iron.FieldVariableTypes.U1,
                                  2, iron.FieldParameterSetTypes.VALUES,
                                  GuccioneModel, "equations/E12",
                                  iron.FieldParameterSetTypes.VALUES)
    CellML.CreateFieldToCellMLMap(dependentField, iron.FieldVariableTypes.U1,
                                  3, iron.FieldParameterSetTypes.VALUES,
                                  GuccioneModel, "equations/E13",
                                  iron.FieldParameterSetTypes.VALUES)
    CellML.CreateFieldToCellMLMap(dependentField, iron.FieldVariableTypes.U1,
                                  4, iron.FieldParameterSetTypes.VALUES,
                                  GuccioneModel, "equations/E22",
                                  iron.FieldParameterSetTypes.VALUES)
    CellML.CreateFieldToCellMLMap(dependentField, iron.FieldVariableTypes.U1,
                                  5, iron.FieldParameterSetTypes.VALUES,
                                  GuccioneModel, "equations/E23",
                                  iron.FieldParameterSetTypes.VALUES)
    CellML.CreateFieldToCellMLMap(dependentField, iron.FieldVariableTypes.U1,
                                  6, iron.FieldParameterSetTypes.VALUES,
                                  GuccioneModel, "equations/E33",
                                  iron.FieldParameterSetTypes.VALUES)
    #DOC-END map strain components

    #DOC-START map stress components
    #Map the stress components
    CellML.CreateCellMLToFieldMap(GuccioneModel, "equations/Tdev11",
                                  iron.FieldParameterSetTypes.VALUES,
                                  dependentField, iron.FieldVariableTypes.U2,
                                  1, iron.FieldParameterSetTypes.VALUES)
    CellML.CreateCellMLToFieldMap(GuccioneModel, "equations/Tdev12",
                                  iron.FieldParameterSetTypes.VALUES,
                                  dependentField, iron.FieldVariableTypes.U2,
                                  2, iron.FieldParameterSetTypes.VALUES)
    CellML.CreateCellMLToFieldMap(GuccioneModel, "equations/Tdev13",
                                  iron.FieldParameterSetTypes.VALUES,
                                  dependentField, iron.FieldVariableTypes.U2,
                                  3, iron.FieldParameterSetTypes.VALUES)
    CellML.CreateCellMLToFieldMap(GuccioneModel, "equations/Tdev22",
                                  iron.FieldParameterSetTypes.VALUES,
                                  dependentField, iron.FieldVariableTypes.U2,
                                  4, iron.FieldParameterSetTypes.VALUES)
    CellML.CreateCellMLToFieldMap(GuccioneModel, "equations/Tdev23",
                                  iron.FieldParameterSetTypes.VALUES,
                                  dependentField, iron.FieldVariableTypes.U2,
                                  5, iron.FieldParameterSetTypes.VALUES)
    CellML.CreateCellMLToFieldMap(GuccioneModel, "equations/Tdev33",
                                  iron.FieldParameterSetTypes.VALUES,
                                  dependentField, iron.FieldVariableTypes.U2,
                                  6, iron.FieldParameterSetTypes.VALUES)

    #Finish the creation of CellML <--> OpenCMISS field maps
    CellML.FieldMapsCreateFinish()

    #Create the CellML models field
    CellMLModelsField = iron.Field()
    CellML.ModelsFieldCreateStart(CellMLModelsFieldUserNumber,
                                  CellMLModelsField)
    CellML.ModelsFieldCreateFinish()

    xidiv = 1.0 / (NumberOfGaussXi + 1)
    for elem in [1]:
        #Gauss point number counter
        ctr = 0
        #Assign model for each quadraturePoint:
        for xi in range(0, NumberOfGaussXi):
            xi1 = (1.0 + xi) * xidiv
            for xj in range(0, NumberOfGaussXi):
                xi2 = (1.0 + xj) * xidiv
                for xk in range(0, NumberOfGaussXi):
                    xi3 = (1.0 + xk) * xidiv
                    ctr = ctr + 1
                    CellMLModelsField.ParameterSetUpdateGaussPoint(
                        iron.FieldVariableTypes.U,
                        iron.FieldParameterSetTypes.VALUES, ctr, 1, 1,
                        GuccioneModel)
    #Create the CellML parameters field --- the strain field
    CellMLParametersField = iron.Field()
    CellML.ParametersFieldCreateStart(CellMLParametersFieldUserNumber,
                                      CellMLParametersField)
    CellML.ParametersFieldCreateFinish()

    #  Create the CellML intermediate field --- the stress field
    CellMLIntermediateField = iron.Field()
    CellML.IntermediateFieldCreateStart(CellMLIntermediateFieldUserNumber,
                                        CellMLIntermediateField)
    CellML.IntermediateFieldCreateFinish()

    for valueIndex, parameter in enumerate(guccioneCellMLParameterIds, 0):
        component = CellML.FieldComponentGet(GuccioneModel,
                                             iron.CellMLFieldTypes.PARAMETERS,
                                             parameter)
        print("Setting parameter: " + parameter + "; to value: " +
              str(guccioneCellMLParameters[valueIndex]) +
              "; field component: " + str(component))
        iron.Field.ComponentValuesInitialiseDP(
            CellMLParametersField, iron.FieldVariableTypes.U,
            iron.FieldParameterSetTypes.VALUES, component,
            guccioneCellMLParameters[valueIndex])

    #equationsSet.MaterialsCreateStart(materialFieldUserNumber,materialField)
    #equationsSet.MaterialsCreateFinish()

    equationsSet.DependentCreateStart(dependentFieldUserNumber, dependentField)
    equationsSet.DependentCreateFinish()

    # Create equations
    equations = iron.Equations()
    equationsSet.EquationsCreateStart(equations)
    equations.sparsityType = iron.EquationsSparsityTypes.SPARSE
    equations.outputType = iron.EquationsOutputTypes.NONE
    equationsSet.EquationsCreateFinish()

    def defineProblemSolver():
        # Define the problem
        problem = iron.Problem()
        problemSpecification = [
            iron.ProblemClasses.ELASTICITY,
            iron.ProblemTypes.FINITE_ELASTICITY,
            iron.ProblemSubtypes.FINITE_ELASTICITY_CELLML
        ]
        problem.CreateStart(problemUserNumber, problemSpecification)
        problem.CreateFinish()

        # Create control loops
        problem.ControlLoopCreateStart()
        problem.ControlLoopCreateFinish()

        # Create problem solver
        nonLinearSolver = iron.Solver()
        linearSolver = iron.Solver()
        problem.SolversCreateStart()
        problem.SolverGet([iron.ControlLoopIdentifiers.NODE], 1,
                          nonLinearSolver)
        nonLinearSolver.outputType = iron.SolverOutputTypes.PROGRESS
        nonLinearSolver.NewtonJacobianCalculationTypeSet(
            iron.JacobianCalculationTypes.FD)
        nonLinearSolver.NewtonLinearSolverGet(linearSolver)
        linearSolver.linearType = iron.LinearSolverTypes.DIRECT
        #linearSolver.libraryType = iron.SolverLibraries.LAPACK
        problem.SolversCreateFinish()

        #Create the problem solver CellML equations
        CellMLSolver = iron.Solver()
        problem.CellMLEquationsCreateStart()
        nonLinearSolver.NewtonCellMLSolverGet(CellMLSolver)
        CellMLEquations = iron.CellMLEquations()
        CellMLSolver.CellMLEquationsGet(CellMLEquations)
        CellMLEquations.CellMLAdd(CellML)
        problem.CellMLEquationsCreateFinish()

        # Create solver equations and add equations set to solver equations
        solver = iron.Solver()
        solverEquations = iron.SolverEquations()
        problem.SolverEquationsCreateStart()
        problem.SolverGet([iron.ControlLoopIdentifiers.NODE], 1, solver)
        solver.SolverEquationsGet(solverEquations)
        solverEquations.sparsityType = iron.SolverEquationsSparsityTypes.SPARSE
        equationsSetIndex = solverEquations.EquationsSetAdd(equationsSet)
        problem.SolverEquationsCreateFinish()

        return [problem, solverEquations]

    def defineBoundaryConditions(solverEquations, increment):
        # Prescribe boundary conditions (absolute nodal parameters)
        boundaryConditions = iron.BoundaryConditions()
        solverEquations.BoundaryConditionsCreateStart(boundaryConditions)

        #Set x=0 nodes to no x displacment in x. Set x=width nodes to 10% x displacement
        boundaryConditions.AddNode(dependentField, iron.FieldVariableTypes.U,
                                   1, 1, 1, 1,
                                   iron.BoundaryConditionsTypes.FIXED, 0.0)
        boundaryConditions.AddNode(dependentField, iron.FieldVariableTypes.U,
                                   1, 1, 3, 1,
                                   iron.BoundaryConditionsTypes.FIXED, 0.0)
        boundaryConditions.AddNode(dependentField, iron.FieldVariableTypes.U,
                                   1, 1, 5, 1,
                                   iron.BoundaryConditionsTypes.FIXED, 0.0)
        boundaryConditions.AddNode(dependentField, iron.FieldVariableTypes.U,
                                   1, 1, 7, 1,
                                   iron.BoundaryConditionsTypes.FIXED, 0.0)

        boundaryConditions.AddNode(dependentField, iron.FieldVariableTypes.U,
                                   1, 1, 2, 1,
                                   iron.BoundaryConditionsTypes.FIXED,
                                   increment)
        boundaryConditions.AddNode(dependentField, iron.FieldVariableTypes.U,
                                   1, 1, 4, 1,
                                   iron.BoundaryConditionsTypes.FIXED,
                                   increment)
        boundaryConditions.AddNode(dependentField, iron.FieldVariableTypes.U,
                                   1, 1, 6, 1,
                                   iron.BoundaryConditionsTypes.FIXED,
                                   increment)
        boundaryConditions.AddNode(dependentField, iron.FieldVariableTypes.U,
                                   1, 1, 8, 1,
                                   iron.BoundaryConditionsTypes.FIXED,
                                   increment)

        # Set y=0 nodes to no y displacement
        boundaryConditions.AddNode(dependentField, iron.FieldVariableTypes.U,
                                   1, 1, 1, 2,
                                   iron.BoundaryConditionsTypes.FIXED, 0.0)
        boundaryConditions.AddNode(dependentField, iron.FieldVariableTypes.U,
                                   1, 1, 2, 2,
                                   iron.BoundaryConditionsTypes.FIXED, 0.0)
        boundaryConditions.AddNode(dependentField, iron.FieldVariableTypes.U,
                                   1, 1, 5, 2,
                                   iron.BoundaryConditionsTypes.FIXED, 0.0)
        boundaryConditions.AddNode(dependentField, iron.FieldVariableTypes.U,
                                   1, 1, 6, 2,
                                   iron.BoundaryConditionsTypes.FIXED, 0.0)

        # Set z=0 nodes to no y displacement
        boundaryConditions.AddNode(dependentField, iron.FieldVariableTypes.U,
                                   1, 1, 1, 3,
                                   iron.BoundaryConditionsTypes.FIXED, 0.0)
        boundaryConditions.AddNode(dependentField, iron.FieldVariableTypes.U,
                                   1, 1, 2, 3,
                                   iron.BoundaryConditionsTypes.FIXED, 0.0)
        boundaryConditions.AddNode(dependentField, iron.FieldVariableTypes.U,
                                   1, 1, 3, 3,
                                   iron.BoundaryConditionsTypes.FIXED, 0.0)
        boundaryConditions.AddNode(dependentField, iron.FieldVariableTypes.U,
                                   1, 1, 4, 3,
                                   iron.BoundaryConditionsTypes.FIXED, 0.0)

        solverEquations.BoundaryConditionsCreateFinish()

    # loop over load steps

    numberOfLoadSteps = 70
    displacementIncrement = 0.01  # 1%
    displacementIncrementDimension = displacementIncrement * width  # length units
    resultRecord = {}
    resultRecord["strain"] = [0.0]
    resultRecord["stress"] = [0.0]
    for counter in range(1, numberOfLoadSteps + 1):
        # define the problem, solver, control loops, etc.
        [problem, solverEquations] = defineProblemSolver()
        # define the boundary conditions
        defineBoundaryConditions(solverEquations,
                                 displacementIncrementDimension)
        # execute the experiment
        problem.Solve()
        # clean up
        problem.Finalise()
        solverEquations.Finalise()

        # export the results
        filename = "results-{:03d}".format(counter)

        # Copy deformed geometry into deformed field
        for component in [1, 2, 3]:
            dependentField.ParametersToFieldParametersComponentCopy(
                iron.FieldVariableTypes.U, iron.FieldParameterSetTypes.VALUES,
                component, deformedField, iron.FieldVariableTypes.U,
                iron.FieldParameterSetTypes.VALUES, component)

        # Export results
        fields = iron.Fields()
        fields.CreateRegion(region)
        fields.NodesExport(filename, "FORTRAN")
        fields.ElementsExport(filename, "FORTRAN")
        fields.Finalise()

        versionNumber = 1
        derivativeNumber = 1
        nodeNumber = 8
        componentNumber = 1  # x-dirn
        reactionForceX = dependentField.ParameterSetGetNode(
            iron.FieldVariableTypes.DELUDELN,
            iron.FieldParameterSetTypes.VALUES, versionNumber,
            derivativeNumber, nodeNumber, componentNumber)
        print("Reaction force (x) at counter: " + str(counter) + ": " +
              str(reactionForceX))
        resultRecord["strain"].append(counter * displacementIncrement)
        resultRecord["stress"].append(reactionForceX)

    coordinateSystem.Destroy()
    region.Destroy()
    basis.Destroy()

    return resultRecord
                                        iron.FieldParameterSetTypes.VALUES)
RyRDensityField.ParameterSetUpdateFinish(iron.FieldVariableTypes.U,
                                         iron.FieldParameterSetTypes.VALUES)
RyRTimelagField.ParameterSetUpdateStart(iron.FieldVariableTypes.U,
                                        iron.FieldParameterSetTypes.VALUES)
RyRTimelagField.ParameterSetUpdateFinish(iron.FieldVariableTypes.U,
                                         iron.FieldParameterSetTypes.VALUES)
del ryrData
gc.collect()

# C e l l M L
# -----------
if computationalNodeNumber == 0:
    print('Setting up CellML model and variable mapping...')
cellmlModelIndex = 1
cellml = iron.CellML()
cellml.CreateStart(userNumber.getInc(), region)
cellml.ModelImport(cellmlFile)

known = ["CRU/iCa", "CRU/ryrDensity", "CRU/timelag"]
for var in known:
    cellml.VariableSetAsKnown(cellmlModelIndex, var)

wanted = [
    "CRU/Jryr", "FluoBuffer/Jfluo", "TnCBuffer/Jtnc", "ATPBuffer/JATP",
    "CaMBuffer/JCaM"
]
for var in wanted:
    cellml.VariableSetAsWanted(cellmlModelIndex, var)

cellml.CreateFinish()