Example #1
0
def generate(scalePops = 1,
             percentage_exc_detailed=0,
             exc2_cell = 'SmithEtAl2013/L23_Retuned_477127614',
             percentage_inh_detailed=0,
             scalex=1,
             scaley=1,
             scalez=1,
             ratio_inh_exc=2,
             connections=True,
             exc_target_dendrites=False,
             inh_target_dendrites=False,
             duration = 1000,
             dt = 0.025,
             input_rate = 150,
             global_delay = 2,
             max_in_pop_to_plot_and_save = 5,
             format='xml',
             suffix='',
             run_in_simulator = None,
             num_processors = 1,
             target_dir='./temp/',
             exc_clamp=None):       # exc_clamp is work in progress...
                 
    reference = ("Multiscale__g%s__i%s%s"%(ratio_inh_exc,input_rate,suffix)).replace('.','_')
                    

    num_exc = scale_pop_size(80,scalePops)
    num_exc2  = int(math.ceil(num_exc*percentage_exc_detailed/100.0))
    num_exc -= num_exc2
    
    num_inh = scale_pop_size(40,scalePops)
    num_inh2  = int(math.ceil(num_inh*percentage_inh_detailed/100.0))
    num_inh -= num_inh2
    
    nml_doc, network = oc.generate_network(reference, network_seed=1234)
    
    #exc_cell_id = 'AllenHH_480351780'
    exc_cell_id = 'AllenHH_477127614'
    #exc_cell_id = 'HH_477127614'
    exc_type = exc_cell_id.split('_')[0]
    oc.include_neuroml2_cell_and_channels(nml_doc, 'cells/%s/%s.cell.nml'%(exc_type,exc_cell_id), exc_cell_id)
    
    
    #inh_cell_id = 'AllenHH_485058595'
    inh_cell_id = 'AllenHH_476686112'
    #inh_cell_id = 'HH_476686112'
    inh_type = exc_cell_id.split('_')[0]
    oc.include_neuroml2_cell_and_channels(nml_doc, 'cells/%s/%s.cell.nml'%(inh_type,inh_cell_id), inh_cell_id)

    if percentage_exc_detailed>0:
        exc2_cell_id = exc2_cell.split('/')[1]
        exc2_cell_dir = exc2_cell.split('/')[0]
        oc.include_neuroml2_cell_and_channels(nml_doc, 'cells/%s/%s.cell.nml'%(exc2_cell_dir,exc2_cell_id), exc2_cell_id)

    if percentage_inh_detailed>0:
        inh2_cell_id = 'cNAC187_L23_NBC_9d37c4b1f8_0_0'
        oc.include_neuroml2_cell_and_channels(nml_doc, 'cells/BBP/%s.cell.nml'%inh2_cell_id, inh2_cell_id)
    

    xDim = 700*scalex
    yDim = 200*scaley
    zDim = 700*scalez

    xs = -1*xDim/2
    ys = -1*yDim/2
    zs = -1*zDim/2

    #####   Synapses
    
    exc_syn_nS = 1.

    synAmpa1 = oc.add_exp_two_syn(nml_doc, id="synAmpa1", gbase="%snS"%exc_syn_nS,
                             erev="0mV", tau_rise="0.5ms", tau_decay="5ms")

    synGaba1 = oc.add_exp_two_syn(nml_doc, id="synGaba1", gbase="%snS"%(exc_syn_nS*ratio_inh_exc),
                             erev="-80mV", tau_rise="1ms", tau_decay="20ms")

    #####   Input types


    pfs1 = oc.add_poisson_firing_synapse(nml_doc,
                                       id="psf1",
                                       average_rate="%s Hz"%input_rate,
                                       synapse_id=synAmpa1.id)


    #####   Populations

    popExc = oc.add_population_in_rectangular_region(network,
                                                  'popExc',
                                                  exc_cell_id,
                                                  num_exc,
                                                  xs,ys,zs,
                                                  xDim,yDim,zDim,
                                                  color=exc_color)                 
    allExc = [popExc]

    if num_exc2>0:
        popExc2 = oc.add_population_in_rectangular_region(network,
                                                  'popExc2',
                                                  exc2_cell_id,
                                                  num_exc2,
                                                  xs,ys,zs,
                                                  xDim,yDim,zDim,
                                                  color=exc2_color)
                                                  
        allExc.append(popExc2)

    popInh = oc.add_population_in_rectangular_region(network,
                                                  'popInh',
                                                  inh_cell_id,
                                                  num_inh,
                                                  xs,ys,zs,
                                                  xDim,yDim,zDim,
                                                  color=inh_color)           
    allInh = [popInh]
    
    if num_inh2>0:
        popInh2 = oc.add_population_in_rectangular_region(network,
                                                  'popInh2',
                                                  inh2_cell_id,
                                                  num_inh2,
                                                  xs,ys,zs,
                                                  xDim,yDim,zDim,
                                                  color=inh2_color)
                                                  
        allInh.append(popInh2)


    #####   Projections

    if connections:

        exc_exc_conn_prob = 0.5
        exc_inh_conn_prob = 0.7
        inh_exc_conn_prob = 0.7
        inh_inh_conn_prob = 0.5
        
        for popEpr in allExc:
            
            for popEpo in allExc:
                proj = add_projection(network, "projEE",
                                      popEpr, popEpo,
                                      synAmpa1.id, exc_exc_conn_prob, 
                                      global_delay,
                                      exc_target_dendrites)
                                                
            for popIpo in allInh:
                proj = add_projection(network, "projEI",
                                      popEpr, popIpo,
                                      synAmpa1.id, exc_inh_conn_prob, 
                                      global_delay,
                                      exc_target_dendrites)

            
        for popIpr in allInh:
            
            for popEpo in allExc:
                proj = add_projection(network, "projIE",
                                      popIpr, popEpo,
                                      synGaba1.id, inh_exc_conn_prob, 
                                      global_delay,
                                      inh_target_dendrites)
        
            for popIpo in allInh:
                proj = add_projection(network, "projII",
                                      popIpr, popIpo,
                                      synGaba1.id, inh_inh_conn_prob, 
                                      global_delay,
                                      inh_target_dendrites)

                                        

    #####   Inputs

    for pop in allExc:
        oc.add_inputs_to_population(network, "Stim_%s"%pop.id,
                                    pop, pfs1.id,
                                    all_cells=True)


    # Work in progress...
    # General idea: clamp one (or more) exc cell at rev pot of inh syn and see only exc inputs
    #
    if exc_clamp:
        
        vc = oc.add_voltage_clamp_triple(nml_doc, id="exc_clamp", 
                             delay='0ms', 
                             duration='%sms'%duration, 
                             conditioning_voltage=synGaba1.erev,
                             testing_voltage=synGaba1.erev,
                             return_voltage=synGaba1.erev, 
                             simple_series_resistance="1e5ohm",
                             active = "1")
                             
        for pop in exc_clamp:
            oc.add_inputs_to_population(network, "exc_clamp_%s"%pop,
                                        network.get_by_id(pop), vc.id,
                                        all_cells=False,
                                        only_cells=exc_clamp[pop])
                


    #####   Save NeuroML and LEMS Simulation files      
    

    nml_file_name = '%s.net.%s'%(network.id,'nml.h5' if format == 'hdf5' else 'nml')
    oc.save_network(nml_doc, 
                    nml_file_name, 
                    validate=(format=='xml'),
                    format = format,
                    target_dir=target_dir)
        

    if format=='xml':
        
        
        save_v = {}
        plot_v = {}
        
        if num_exc>0:
            exc_traces = '%s_%s_v.dat'%(network.id,popExc.id)
            save_v[exc_traces] = []
            plot_v[popExc.id] = []
            
        if num_inh>0:
            inh_traces = '%s_%s_v.dat'%(network.id,popInh.id)
            save_v[inh_traces] = []
            plot_v[popInh.id] = []
            
        if num_exc2>0:
            exc2_traces = '%s_%s_v.dat'%(network.id,popExc2.id)
            save_v[exc2_traces] = []
            plot_v[popExc2.id] = []
            
        if num_inh2>0:
            inh2_traces = '%s_%s_v.dat'%(network.id,popInh2.id)
            save_v[inh2_traces] = []
            plot_v[popInh2.id] = []
        
        
        for i in range(min(max_in_pop_to_plot_and_save,num_exc)):
            plot_v[popExc.id].append("%s/%i/%s/v"%(popExc.id,i,popExc.component))
            save_v[exc_traces].append("%s/%i/%s/v"%(popExc.id,i,popExc.component))
            
        for i in range(min(max_in_pop_to_plot_and_save,num_exc2)):
            plot_v[popExc2.id].append("%s/%i/%s/v"%(popExc2.id,i,popExc2.component))
            save_v[exc2_traces].append("%s/%i/%s/v"%(popExc2.id,i,popExc2.component))
            
        for i in range(min(max_in_pop_to_plot_and_save,num_inh)):
            plot_v[popInh.id].append("%s/%i/%s/v"%(popInh.id,i,popInh.component))
            save_v[inh_traces].append("%s/%i/%s/v"%(popInh.id,i,popInh.component))
            
        for i in range(min(max_in_pop_to_plot_and_save,num_inh2)):
            plot_v[popInh2.id].append("%s/%i/%s/v"%(popInh2.id,i,popInh2.component))
            save_v[inh2_traces].append("%s/%i/%s/v"%(popInh2.id,i,popInh2.component))
            
        gen_spike_saves_for_all_somas = run_in_simulator!='jNeuroML_NetPyNE'
            
        lems_file_name = oc.generate_lems_simulation(nml_doc, network, 
                                target_dir+nml_file_name, 
                                duration =      duration, 
                                dt =            dt,
                                gen_plots_for_all_v = False,
                                gen_plots_for_quantities = plot_v,
                                gen_saves_for_all_v = False,
                                gen_saves_for_quantities = save_v,
                                gen_spike_saves_for_all_somas = gen_spike_saves_for_all_somas,
                                target_dir=target_dir)
                                
        
        if run_in_simulator:
            
            print ("Running %s for %sms in %s"%(lems_file_name, duration, run_in_simulator))
            
            traces, events = oc.simulate_network(lems_file_name,
                     run_in_simulator,
                     max_memory='4000M',
                     nogui=True,
                     load_saved_data=True,
                     reload_events=True,
                     plot=False,
                     verbose=False,
                     num_processors=num_processors)
                     
                     
            print("Reloaded traces: %s"%traces.keys())
            #print("Reloaded events: %s"%events.keys())
            
            use_events_for_rates = False
            
            exc_rate = 0
            inh_rate = 0
            
            if use_events_for_rates:
                if (run_in_simulator=='jNeuroML_NetPyNE'):
                    raise('Saving of spikes (and so calculation of rates) not yet supported in jNeuroML_NetPyNE')
                for ek in events.keys():
                    rate = 1000 * len(events[ek])/float(duration)
                    print("Cell %s has rate %s Hz"%(ek,rate))
                    if 'popExc' in ek:
                        exc_rate += rate/num_exc
                    if 'popInh' in ek:
                        inh_rate += rate/num_inh
            
            else:
                tot_exc_rate = 0 
                exc_cells = 0
                tot_inh_rate = 0 
                inh_cells = 0
                tt = [t*1000 for t in traces['t']]
                for tk in traces.keys():
                    if tk!='t':
                        rate = get_rate_from_trace(tt,[v*1000 for v in traces[tk]])
                        print("Cell %s has rate %s Hz"%(tk,rate))
                        if 'popExc' in tk:
                            tot_exc_rate += rate
                            exc_cells+=1
                        if 'popInh' in tk:
                            tot_inh_rate += rate
                            inh_cells+=1
                            
                exc_rate = tot_exc_rate/exc_cells
                inh_rate = tot_inh_rate/inh_cells
                    
                    
                    
            print("Run %s: Exc rate: %s Hz; Inh rate %s Hz"%(reference,exc_rate, inh_rate))
                     
            return exc_rate, inh_rate, traces
        
    else:
        lems_file_name = None
                                
    return nml_doc, nml_file_name, lems_file_name
Example #2
0
def generate(cell_id, duration, reference, 
             Bee=1,
             Ensyn = 10, 
             Erates = [50,100],
             st_onset = 0,
             st_duration = 1e9,
             format='hdf5',
             simulator=None,
             num_processors=1,
             target_group='soma_group',
             temperature='35degC'):

    #Insyn = int(Ensyn * 0.2)
    #bInsyn = int(bEnsyn * 0.2)
    
    cell_file = '../%s.cell.nml'%cell_id
    if '/' in cell_id:
        cell_id=cell_id.split('/')[-1]

    nml_doc, network = oc.generate_network(reference, temperature=temperature)

    oc.include_neuroml2_cell_and_channels(nml_doc,cell_file,cell_id)
    
    
    synAmpaEE = oc.add_exp_one_syn(nml_doc, id="synAmpaEE", gbase="%snS"%Bee,
                             erev="0mV", tau_decay="1ms")


    pop = oc.add_population_in_rectangular_region(network,
                                        'L23_pop',
                                        cell_id,
                                        len(Erates),
                                        0,0,0,
                                        100,100,100)
    
          
    
    to_plot = {'Some_voltages':[]}
    to_save = {'%s_voltages.dat'%cell_id:[]}
    
    interesting_seg_ids = [0,200,1000,2000,2500,2949] # [soma, .. some dends .. , axon]
    interesting_seg_ids = [0] # [soma, .. some dends .. , axon]

    
    for i,r in enumerate(Erates):
        
        syn0 = oc.add_transient_poisson_firing_synapse(nml_doc,
                                           id="%s_stim_%s"%(synAmpaEE.id,r),
                                           average_rate="%s Hz"%r,
                                           synapse_id=synAmpaEE.id,
                                           delay='%s ms'%st_onset,
                                           duration='%s ms'%st_duration)
                                           
        oc.add_targeted_inputs_to_population(network, 
                                             "Esyn_%s"%r,
                                             pop, 
                                             syn0.id, 
                                             segment_group=target_group,
                                             number_per_cell = Ensyn,
                                             all_cells=False,
                                             only_cells=[i])
                                             
        for seg_id in interesting_seg_ids:
            to_plot.values()[0].append('%s/%s/%s/%s/v'%(pop.id, i, pop.component,seg_id))
            to_save.values()[0].append('%s/%s/%s/%s/v'%(pop.id, i, pop.component,seg_id))
            
                                

    nml_file_name = '%s.net.nml'%network.id + ('.h5' if format=='hdf5' else '')
    
    target_dir='./'
    
    oc.save_network(nml_doc, 
                    nml_file_name, 
                    validate=False, 
                    use_subfolder=True,
                    target_dir=target_dir,
                    format=format)



    lems_file_name, lems_sim = oc.generate_lems_simulation(nml_doc,
                                network, 
                                nml_file_name, 
                                duration, 
                                dt = 0.025,
                                target_dir=target_dir,
                                gen_plots_for_all_v = False,
                                plot_all_segments = False,
                                gen_plots_for_quantities = to_plot,   #  Dict with displays vs lists of quantity paths
                                gen_saves_for_all_v = False,
                                save_all_segments = False,
                                gen_saves_for_quantities = to_save,   #  Dict with file names vs lists of quantity paths
                                verbose = True)
                                
    if simulator:
                
        print ("Running %s for %sms in %s"%(lems_file_name, duration, simulator))

        traces, events = oc.simulate_network(lems_file_name,
                 simulator,
                 max_memory='4000M',
                 nogui=True,
                 load_saved_data=True,
                 reload_events=True,
                 plot=False,
                 verbose=True,
                 num_processors=num_processors)
                 
        rates = {}
        tt = [t*1000 for t in traces['t']]
        for tk in traces.keys():
            if tk!='t':
                rate = get_rate_from_trace(tt,[v*1000 for v in traces[tk]])
                print("Cell %s has rate %s Hz"%(tk,rate))
                i = int(tk.split('/')[1])
                rates[Erates[i]]=rate

        print Erates
        print rates

        ax = pynml.generate_plot([Erates],             
                                 [ [rates[r] for r in Erates] ],                
                                 "FF plots",               
                                 xaxis = 'Input frequency (Hz)',        
                                 yaxis = 'Firing frequency (Hz)',  
                                 markers=['o'],
                                 show_plot_already=True)     # Save figure
                                
        file_name = '%s.%s.%ssyns.%s.rates'%(cell_id,target_group,Ensyn,temperature)     
        f = open(file_name,'w')
        for r in Erates:
            f.write('%s\t%s\n'%(r,rates[r]))
        f.close()
        
        print("Finished! Saved rates data to %s"%file_name)
Example #3
0
def RunColumnSimulation(net_id="TestRunColumn",
                        nml2_source_dir="../../../neuroConstruct/generatedNeuroML2/",
                        sim_config="TempSimConfig",
                        scale_cortex=0.1,
                        scale_thalamus=0.1,
                        cell_bodies_overlap=True,
                        cylindrical=True,
                        default_synaptic_delay=0.05,
                        gaba_scaling=1.0,
                        l4ss_ampa_scaling=1.0,
                        l5pyr_gap_scaling =1.0,
                        in_nrt_tcr_nmda_scaling =1.0,
                        pyr_ss_nmda_scaling=1.0,
                        deep_bias_current=-1,
                        include_gap_junctions=True,
                        which_cell_types_to_include='all',
                        dir_nml2="../../",
                        backgroundL5Rate=30, # Hz
                        backgroundL23Rate=30, # Hz
                        duration=300,
                        dt=0.025,
                        max_memory='1000M',
                        seed=1234,
                        simulator=None,
                        num_of_cylinder_sides=None):
              
                        
    popDictFull = {}
    
    ##############   Full model ##################################
    
    popDictFull['CG3D_L23PyrRS'] = (1000, 'L23','L23PyrRS','multi', occ.L23_PRINCIPAL_CELL)
    popDictFull['CG3D_L23PyrFRB']= (50,'L23','L23PyrFRB_varInit','multi', occ.L23_PRINCIPAL_CELL_2)
    
    popDictFull['CG3D_SupBask'] = (90, 'L23','SupBasket','multi', occ.L23_INTERNEURON)  # over both l23 & l4
    popDictFull['CG3D_SupAxAx'] = (90, 'L23','SupAxAx','multi', occ.L23_INTERNEURON_2)  # over both l23 & l4
    popDictFull['CG3D_SupLTS']= (90,'L23','SupLTSInter','multi', occ.L4_INTERNEURON)    # over both l23 & l4
    
    popDictFull['CG3D_L4SpinStell']= (240,'L4','L4SpinyStellate','multi', occ.L4_PRINCIPAL_CELL)
    
    popDictFull['CG3D_L5TuftIB'] = (800, 'L5','L5TuftedPyrIB','multi', occ.L5_PRINCIPAL_CELL)
    popDictFull['CG3D_L5TuftRS']= (200,'L5','L5TuftedPyrRS','multi', occ.L5_PRINCIPAL_CELL_2)     
    
    popDictFull['CG3D_L6NonTuftRS']= (500,'L6','L6NonTuftedPyrRS','multi', occ.L6_PRINCIPAL_CELL)
    
    popDictFull['CG3D_DeepAxAx']= (100,'L6','DeepAxAx','multi', occ.L5_INTERNEURON)     # over both l5 & l6
    popDictFull['CG3D_DeepBask']= (100,'L6','DeepBasket','multi', occ.L5_INTERNEURON_2)   # over both l5 & l6
    popDictFull['CG3D_DeepLTS']= (100,'L6','DeepLTSInter','multi', occ.L6_INTERNEURON)  # over both l5 & l6
    
    popDictFull['CG3D_nRT']= (100,'Thalamus','nRT','multi', occ.THALAMUS_1)
    popDictFull['CG3D_TCR']= (100,'Thalamus','TCR','multi', occ.THALAMUS_2)
    
    ###############################################################
    
    dir_to_cells=os.path.join(dir_nml2,"cells")
    
    dir_to_synapses=os.path.join(dir_nml2,"synapses")
    
    dir_to_gap_junctions=os.path.join(dir_nml2,"gapJunctions")
    
    popDict={}
    
    cell_model_list=[]
    
    cell_diameter_dict={}
    
    nml_doc, network = oc.generate_network(net_id,seed)
    
    for cell_population in popDictFull.keys():
    
        include_cell_population=False
        
        cell_model=popDictFull[cell_population][2]
    
        if which_cell_types_to_include=='all' or cell_model in which_cell_types_to_include:
        
           popDict[cell_population]=()

           if popDictFull[cell_population][1] !='Thalamus':
             
              popDict[cell_population]=(int(round(scale_cortex*popDictFull[cell_population][0])), 
                                        popDictFull[cell_population][1],
                                        popDictFull[cell_population][2],
                                        popDictFull[cell_population][3],
                                        popDictFull[cell_population][4])
                  
              cell_count=int(round(scale_cortex*popDictFull[cell_population][0]))
                
           else:
             
              popDict[cell_population]=(int(round(scale_thalamus*popDictFull[cell_population][0])),
                                        popDictFull[cell_population][1],
                                        popDictFull[cell_population][2],
                                        popDictFull[cell_population][3],
                                        popDictFull[cell_population][4])
                  
              cell_count=int(round(scale_thalamus*popDictFull[cell_population][0]))
           
           if cell_count !=0:
    
              include_cell_population=True
               
        if include_cell_population:
        
           cell_model_list.append(popDictFull[cell_population][2])
           
           cell_diameter=oc_build.get_soma_diameter(popDictFull[cell_population][2],dir_to_cell=dir_to_cells)
           
           if popDictFull[cell_population][2] not in cell_diameter_dict.keys():
           
              cell_diameter_dict[popDictFull[cell_population][2]]=cell_diameter
           
           
    cell_model_list_final=list(set(cell_model_list))
    
    opencortex.print_comment_v("This is a final list of cell model ids: %s"%cell_model_list_final)
    
    copy_nml2_from_source=False
    
    for cell_model in cell_model_list_final:
    
       if not os.path.exists(os.path.join(dir_to_cells,"%s.cell.nml"%cell_model)):
       
          copy_nml2_from_source=True
          
          break
           
    if copy_nml2_from_source:
       
       oc_build.copy_nml2_source(dir_to_project_nml2=dir_nml2,
                        primary_nml2_dir=nml2_source_dir,
                        electrical_synapse_tags=['Elect'],
                        chemical_synapse_tags=['.synapse.'],
                        extra_channel_tags=['cad'])
                        
       passed_includes_in_cells=oc_utils.check_includes_in_cells(dir_to_cells,cell_model_list_final,extra_channel_tags=['cad'])
       
       if not passed_includes_in_cells:
       
          opencortex.print_comment_v("Execution of RunColumn.py will terminate.")
  
          quit()
             
    for cell_model in cell_model_list_final:
        
        oc_build._add_cell_and_channels(nml_doc, os.path.join(dir_to_cells,"%s.cell.nml"%cell_model), cell_model, use_prototypes=False)
        
    t1=-0
    t2=-250
    t3=-250
    t4=-200.0
    t5=-300.0
    t6=-300.0
    t7=-200.0
    t8=-200.0

    boundaries={}

    boundaries['L1']=[0,t1]
    boundaries['L23']=[t1,t1+t2+t3]
    boundaries['L4']=[t1+t2+t3,t1+t2+t3+t4]
    boundaries['L5']=[t1+t2+t3+t4,t1+t2+t3+t4+t5]
    boundaries['L6']=[t1+t2+t3+t4+t5,t1+t2+t3+t4+t5+t6]
    boundaries['Thalamus']=[t1+t2+t3+t4+t5+t6+t7,t1+t2+t3+t4+t5+t6+t7+t8]
    
    xs = [0,500]
    zs = [0,500] 
    
    passed_pops=oc_utils.check_pop_dict_and_layers(pop_dict=popDict,boundary_dict=boundaries)
    
    if passed_pops:
    
       opencortex.print_comment_v("Population parameters were specified correctly.") 
       
       if cylindrical:
       
          pop_params=oc_utils.add_populations_in_cylindrical_layers(network,boundaries,popDict,radiusOfCylinder=250,cellBodiesOverlap=cell_bodies_overlap,
                                                                    cellDiameterArray=cell_diameter_dict,numOfSides=num_of_cylinder_sides)
                                                                 
       else:
                                                                 
          pop_params=oc_utils.add_populations_in_rectangular_layers(network,boundaries,popDict,xs,zs,cellBodiesOverlap=False,cellDiameterArray=cell_diameter_dict)
       
    else:
    
       opencortex.print_comment_v("Population parameters were specified incorrectly; execution of RunColumn.py will terminate.")
       
       quit() 
    
    src_files = os.listdir("./")
    
    if 'netConnList' in src_files:
    
       full_path_to_connectivity='netConnList'
       
    else:
    
       full_path_to_connectivity="../../../neuroConstruct/pythonScripts/netbuild/netConnList"
                   
    weight_params=[{'weight':gaba_scaling,'synComp':'GABAA','synEndsWith':[],'targetCellGroup':[]},
                   {'weight':l4ss_ampa_scaling,'synComp':'Syn_AMPA_L4SS_L4SS','synEndsWith':[],'targetCellGroup':[]},
                   {'weight':l5pyr_gap_scaling,'synComp':'Syn_Elect_DeepPyr_DeepPyr','synEndsWith':[],'targetCellGroup':['CG3D_L5']},
                   {'weight':in_nrt_tcr_nmda_scaling,'synComp':'NMDA','synEndsWith':["_IN","_DeepIN","_SupIN","_SupFS","_DeepFS","_SupLTS","_DeepLTS","_nRT","_TCR"],
                   'targetCellGroup':[]},
                   {'weight':pyr_ss_nmda_scaling,'synComp':'NMDA','synEndsWith':["_IN","_DeepIN","_SupIN","_SupFS","_DeepFS","_SupLTS","_DeepLTS","_nRT","_TCR"],
                   'targetCellGroup':[]}]
                   
    delay_params=[{'delay':default_synaptic_delay,'synComp':'all'}]

    passed_weight_params=oc_utils.check_weight_params(weight_params)
    
    passed_delay_params=oc_utils.check_delay_params(delay_params)
    
    if passed_weight_params and passed_delay_params:    
    
       opencortex.print_comment_v("Synaptic weight and delay parameters were specified correctly.")     
       
       ignore_synapses = []
       if not include_gap_junctions:
           ignore_synapses = ['Syn_Elect_SupPyr_SupPyr','Syn_Elect_CortIN_CortIN','Syn_Elect_L4SS_L4SS','Syn_Elect_DeepPyr_DeepPyr','Syn_Elect_nRT_nRT']
    
       all_synapse_components,projArray,cached_segment_dicts=oc_utils.build_connectivity(net=network,
                                                                                         pop_objects=pop_params,
                                                                                         path_to_cells=dir_to_cells,
                                                                                         full_path_to_conn_summary=full_path_to_connectivity,
                                                                                         pre_segment_group_info=[{'PreSegGroup':"distal_axon",'ProjType':'Chem'}],
                                                                                         synaptic_scaling_params=weight_params,
                                                                                         synaptic_delay_params=delay_params,
                                                                                         ignore_synapses=ignore_synapses)   
                                                                                         
    else:
       
       if not passed_weight_params:
       
          opencortex.print_comment_v("Synaptic weight parameters were specified incorrectly; execution of RunColumn.py will terminate.") 
          
       if not passed_delay_params:
       
          opencortex.print_comment_v("Synaptic delay parameters were specified incorrectly; execution of RunColumn.py will terminate.")
       
       quit()
    
    ############ for testing only; will add original specifications later ##############################################################
    
    if sim_config=="Testing1":
       
       input_params={'CG3D_L23PyrRS':[{'InputType':'GeneratePoissonTrains',
                          'InputName':'Poi_CG3D_L23PyrRS',
                          'TrainType':'transient',
                          'Synapse':'Syn_AMPA_SupPyr_SupPyr',
                          'AverageRateList':[200.0,150.0],
                          'RateUnits':'Hz',
                          'TimeUnits':'ms',
                          'DurationList':[100.0,50.0],
                          'DelayList':[50.0,200.0],
                          'FractionToTarget':1.0,
                          'LocationSpecific':False,
                          'TargetDict':{'soma_group':1 }       }]              }
                       
    ###################################################################################################################################
    
    if sim_config=="Testing2":
    
       input_params_final={'CG3D_L23PyrRS':[{'InputType':'PulseGenerators',
                           'InputName':"DepCurr_L23RS",
                           'Noise':True,
                           'SmallestAmplitudeList':[5.0E-5,1.0E-5],
                           'LargestAmplitudeList':[1.0E-4,2.0E-5],
                           'DurationList':[20000.0,20000.0],
                           'DelayList':[0.0,20000.0],
                           'TimeUnits':'ms',
                           'AmplitudeUnits':'uA',
                           'FractionToTarget':1.0,
                           'LocationSpecific':False,
                           'TargetDict':{'dendrite_group':1}             }]             } 
                     
    if sim_config=="TempSimConfig":
    
       input_params ={'CG3D_L23PyrRS':[{'InputType':'PulseGenerators',
                     'InputName':"DepCurr_L23RS",
                     'Noise':True,
                     'SmallestAmplitudeList':[5.0E-5],
                     'LargestAmplitudeList':[1.0E-4],
                     'DurationList':[20000.0],
                     'DelayList':[0.0],
                     'TimeUnits':'ms',
                     'AmplitudeUnits':'uA',
                     'FractionToTarget':1.0,
                     'LocationSpecific':False,
                     'UniversalTargetSegmentID':0,
                     'UniversalFractionAlong':0.5},
                     
                      {'InputType':'GeneratePoissonTrains',
                     'InputName':"BackgroundL23RS",
                     'TrainType':'persistent',
                     'Synapse':'Syn_AMPA_SupPyr_SupPyr',
                     'AverageRateList':[float(backgroundL23Rate)],
                     'RateUnits':'Hz',
                     'FractionToTarget':1.0,
                     'LocationSpecific':False,
                     'TargetDict':{'dendrite_group':100} },
                     
                     {'InputType':'GeneratePoissonTrains',
                     'InputName':"EctopicStimL23RS",
                     'TrainType':'persistent',
                     'Synapse':'SynForEctStim',
                     'AverageRateList':[0.1],
                     'RateUnits':'Hz',
                     'FractionToTarget':1.0,
                     'LocationSpecific':False,
                     'UniversalTargetSegmentID':143,
                     'UniversalFractionAlong':0.5} ],
                     
                     'CG3D_TCR':[{'InputType':'GeneratePoissonTrains',
                     'InputName':"EctopicStimTCR",
                     'TrainType':'persistent',
                     'Synapse':'SynForEctStim',
                     'AverageRateList':[1.0],
                     'RateUnits':'Hz',
                     'FractionToTarget':1.0,
                     'LocationSpecific':False,
                     'UniversalTargetSegmentID':269,
                     'UniversalFractionAlong':0.5},
                     
                     {'InputType':'GeneratePoissonTrains',
                     'InputName':"Input_20",
                     'TrainType':'persistent',
                     'Synapse':'Syn_AMPA_L6NT_TCR',
                     'AverageRateList':[50.0],
                     'RateUnits':'Hz',
                     'FractionToTarget':1.0,
                     'LocationSpecific':False,
                     'TargetDict':{'dendrite_group':100} }],  
                     
                     'CG3D_L23PyrFRB':[{'InputType':'GeneratePoissonTrains',
                     'InputName':"EctopicStimL23FRB",
                     'TrainType':'persistent',
                     'Synapse':'SynForEctStim',
                     'AverageRateList':[0.1],
                     'RateUnits':'Hz',
                     'FractionToTarget':1.0,
                     'LocationSpecific':False,
                     'UniversalTargetSegmentID':143,
                     'UniversalFractionAlong':0.5},
                     
                     {'InputType':'PulseGenerators',
                     'InputName':"DepCurr_L23FRB",
                     'Noise':True,
                     'SmallestAmplitudeList':[2.5E-4],
                     'LargestAmplitudeList':[3.5E-4],
                     'DurationList':[20000.0],
                     'DelayList':[0.0],
                     'TimeUnits':'ms',
                     'AmplitudeUnits':'uA',
                     'FractionToTarget':1.0,
                     'LocationSpecific':False,
                     'UniversalTargetSegmentID':0,
                     'UniversalFractionAlong':0.5} ], 
                     
                     'CG3D_L6NonTuftRS':[{'InputType':'GeneratePoissonTrains',
                     'InputName':"EctopicStimL6NT",
                     'TrainType':'persistent',
                     'Synapse':'SynForEctStim',
                     'AverageRateList':[1.0],
                     'RateUnits':'Hz',
                     'FractionToTarget':1.0,
                     'LocationSpecific':False,
                     'UniversalTargetSegmentID':95,
                     'UniversalFractionAlong':0.5},
                     
                     {'InputType':'PulseGenerators',
                     'InputName':"DepCurr_L6NT",
                     'Noise':True,
                     'SmallestAmplitudeList':[5.0E-5],
                     'LargestAmplitudeList':[1.0E-4],
                     'DurationList':[20000.0],
                     'DelayList':[0.0],
                     'TimeUnits':'ms',
                     'AmplitudeUnits':'uA',
                     'FractionToTarget':1.0,
                     'LocationSpecific':False,
                     'UniversalTargetSegmentID':0,
                     'UniversalFractionAlong':0.5} ],
                     
                     'CG3D_L4SpinStell':[{'InputType':'PulseGenerators',
                     'InputName':"DepCurr_L4SS",
                     'Noise':True,
                     'SmallestAmplitudeList':[5.0E-5],
                     'LargestAmplitudeList':[1.0E-4],
                     'DurationList':[20000.0],
                     'DelayList':[0.0],
                     'TimeUnits':'ms',
                     'AmplitudeUnits':'uA',
                     'FractionToTarget':1.0,
                     'LocationSpecific':False,
                     'UniversalTargetSegmentID':0,
                     'UniversalFractionAlong':0.5}],
                     
                     'CG3D_L5TuftIB':[{'InputType':'GeneratePoissonTrains',
                     'InputName':"BackgroundL5",
                     'TrainType':'persistent',
                     'Synapse':'Syn_AMPA_L5RS_L5Pyr',
                     'AverageRateList':[float(backgroundL5Rate)],
                     'RateUnits':'Hz',
                     'FractionToTarget':1.0,
                     'LocationSpecific':False,
                     'TargetDict':{'dendrite_group':100} },
                     
                     {'InputType':'GeneratePoissonTrains',
                     'InputName':"EctopicStimL5IB",
                     'TrainType':'persistent',
                     'Synapse':'SynForEctStim',
                     'AverageRateList':[1.0],
                     'RateUnits':'Hz',
                     'FractionToTarget':1.0,
                     'LocationSpecific':False,
                     'UniversalTargetSegmentID':119,
                     'UniversalFractionAlong':0.5},
                     
                      {'InputType':'PulseGenerators',
                     'InputName':"DepCurr_L5IB",
                     'Noise':True,
                     'SmallestAmplitudeList':[5.0E-5],
                     'LargestAmplitudeList':[1.0E-4],
                     'DurationList':[20000.0],
                     'DelayList':[0.0],
                     'TimeUnits':'ms',
                     'AmplitudeUnits':'uA',
                     'FractionToTarget':1.0,
                     'LocationSpecific':False,
                     'UniversalTargetSegmentID':0,
                     'UniversalFractionAlong':0.5} ],
                     
                     'CG3D_L5TuftRS':[{'InputType':'GeneratePoissonTrains',
                     'InputName':"EctopicStimL5RS",
                     'TrainType':'persistent',
                     'Synapse':'SynForEctStim',
                     'AverageRateList':[1.0],
                     'RateUnits':'Hz',
                     'FractionToTarget':1.0,
                     'LocationSpecific':False,
                     'UniversalTargetSegmentID':119,
                     'UniversalFractionAlong':0.5},
                     
                      {'InputType':'PulseGenerators',
                     'InputName':"DepCurr_L5RS",
                     'Noise':True,
                     'SmallestAmplitudeList':[5.0E-5],
                     'LargestAmplitudeList':[1.0E-4],
                     'DurationList':[20000.0],
                     'DelayList':[0.0],
                     'TimeUnits':'ms',
                     'AmplitudeUnits':'uA',
                     'FractionToTarget':1.0,
                     'LocationSpecific':False,
                     'UniversalTargetSegmentID':0,
                     'UniversalFractionAlong':0.5}  ]   }
                     
       input_params_final={}
       
       for pop_id in pop_params.keys():
          
           if pop_id in input_params.keys():
       
              input_params_final[pop_id]=input_params[pop_id]
                     
       if deep_bias_current >= 0:
    
          for cell_group in input_params_final.keys():
       
              for input_group in range(0,len(input_params_final[cell_group])):
              
                  check_type=input_params_final[cell_group][input_group]['InputType']=="PulseGenerators"
                  
                  check_group_1= cell_group=="CG3D_L5TuftIB"
                  
                  check_group_2=cell_group =="CG3D_L5TuftRS"
                  
                  check_group_3= cell_group =="CG3D_L6NonTuftRS"
           
                  if check_type and (check_group_1 or check_group_2 or check_group_3):
	    
	             opencortex.print_comment_v("Changing offset current in 'PulseGenerators' for %s to %f"%(cell_group, deep_bias_current))
	      
	             input_params_final[cell_group][input_group]['SmallestAmplitudeList']=[ (deep_bias_current-0.05)/1000 ] 
	              
	             input_params_final[cell_group][input_group]['LargestAmplitudeList']=[ (deep_bias_current+0.05)/1000 ]
                     
    input_list_array_final, input_synapse_list=oc_utils.build_inputs(nml_doc=nml_doc,
                                                                     net=network,
                                                                     population_params=pop_params,
                                                                     input_params=input_params_final,
                                                                     cached_dicts=cached_segment_dicts,
                                                                     path_to_cells=dir_to_cells,
                                                                     path_to_synapses=dir_to_synapses)
    
    ####################################################################################################################################
    
    for input_synapse in input_synapse_list:
    
        if input_synapse not in all_synapse_components:
        
           all_synapse_components.append(input_synapse)
           
    synapse_list=[]
    
    gap_junction_list=[]
        
    for syn_ind in range(0,len(all_synapse_components)):
    
        if 'Elect' not in all_synapse_components[syn_ind]:
        
           synapse_list.append(all_synapse_components[syn_ind])
        
           all_synapse_components[syn_ind]=os.path.join(net_id,all_synapse_components[syn_ind]+".synapse.nml")
           
        else:
        
           gap_junction_list.append(all_synapse_components[syn_ind])
        
           all_synapse_components[syn_ind]=os.path.join(net_id,all_synapse_components[syn_ind]+".nml")
           
    oc_build.add_synapses(nml_doc,dir_to_synapses,synapse_list,synapse_tag=True)
    
    oc_build.add_synapses(nml_doc,dir_to_gap_junctions,gap_junction_list,synapse_tag=False)
    
    nml_file_name = '%s.net.nml'%network.id
    
    oc.save_network(nml_doc, nml_file_name, validate=True,max_memory=max_memory)
    
    oc_build.remove_component_dirs(dir_to_project_nml2="%s"%network.id,list_of_cell_ids=cell_model_list_final,extra_channel_tags=['cad'])
    
    lems_file_name=oc.generate_lems_simulation(nml_doc, 
                                               network, 
                                               nml_file_name, 
                                               duration =duration, 
                                               dt =dt,
                                               include_extra_lems_files=all_synapse_components)
     
    if simulator != None:                                          
                                               
       opencortex.print_comment_v("Starting simulation of %s.net.nml"%net_id)
                            
       oc.simulate_network(lems_file_name=lems_file_name,
                           simulator=simulator,
                           max_memory=max_memory)
Example #4
0
def generate(scale_populations=1,
             percentage_exc_detailed=0,
             exc2_cell='SmithEtAl2013/L23_Retuned_477127614',
             percentage_inh_detailed=0,
             scalex=1,
             scaley=1,
             scalez=1,
             Bee=.1,
             Bei=.1,
             Bie=-.2,
             Bii=-.2,
             Be_bkg=.1,
             Be_stim=.1,
             r_bkg=0,
             r_stim=0,
             fraction_inh_pert=0.75,
             connections=True,
             exc_target_dendrites=False,
             inh_target_dendrites=False,
             duration=1000,
             dt=0.025,
             global_delay=.1,
             max_in_pop_to_plot_and_save=10,
             format='xml',
             suffix='',
             run_in_simulator=None,
             num_processors=1,
             target_dir='./temp/',
             exc_clamp=None):  # exc_clamp is work in progress...

    reference = ("ISN_net%s" % (suffix)).replace('.', '_')

    print('-------------------------------------------------')
    print('  Generating ISN network: %s' % reference)
    print('    Duration: %s; dt: %s; scale: %s; simulator: %s (num proc. %s)' %
          (duration, dt, scale_populations, run_in_simulator, num_processors))
    print('    Bee: %s; Bei: %s; Bie: %s; Bii: %s' % (Bee, Bei, Bie, Bii))
    print('    Be_bkg: %s at %sHz' % (Be_bkg, r_bkg))
    print('    Be_stim: %s at %sHz (i.e. %sHz for %s perturbed I cells)' %
          (Be_stim, r_stim, r_bkg + r_stim, fraction_inh_pert))
    print('    Exc detailed: %s%% - Inh detailed %s%%' %
          (percentage_exc_detailed, percentage_inh_detailed))
    print('-------------------------------------------------')

    num_exc = scale_pop_size(80, scale_populations)
    num_exc2 = int(math.ceil(num_exc * percentage_exc_detailed / 100.0))
    num_exc -= num_exc2

    num_inh = scale_pop_size(20, scale_populations)
    num_inh2 = int(math.ceil(num_inh * percentage_inh_detailed / 100.0))
    num_inh -= num_inh2

    nml_doc, network = oc.generate_network(reference, network_seed=1234)

    #exc_cell_id = 'AllenHH_480351780'
    exc_cell_id = 'AllenHH_477127614'
    #exc_cell_id = 'HH_477127614'
    exc_cell_id = 'HH2_477127614'
    exc_type = exc_cell_id.split('_')[0]
    oc.include_neuroml2_cell_and_channels(
        nml_doc, 'cells/%s/%s.cell.nml' % (exc_type, exc_cell_id), exc_cell_id)

    #inh_cell_id = 'AllenHH_485058595'
    inh_cell_id = 'AllenHH_476686112'
    #inh_cell_id = 'AllenHH_477127614'
    #inh_cell_id = 'HH_476686112'
    inh_cell_id = 'HH2_476686112'
    inh_type = exc_cell_id.split('_')[0]
    oc.include_neuroml2_cell_and_channels(
        nml_doc, 'cells/%s/%s.cell.nml' % (inh_type, inh_cell_id), inh_cell_id)

    if percentage_exc_detailed > 0:
        exc2_cell_id = exc2_cell.split('/')[1]
        exc2_cell_dir = exc2_cell.split('/')[0]
        oc.include_neuroml2_cell_and_channels(
            nml_doc, 'cells/%s/%s.cell.nml' % (exc2_cell_dir, exc2_cell_id),
            exc2_cell_id)

    if percentage_inh_detailed > 0:
        inh2_cell_id = 'cNAC187_L23_NBC_9d37c4b1f8_0_0'
        oc.include_neuroml2_cell_and_channels(
            nml_doc, 'cells/BBP/%s.cell.nml' % inh2_cell_id, inh2_cell_id)

    xDim = 700 * scalex
    yDim = 200 * scaley
    zDim = 700 * scalez

    xs = -1 * xDim / 2
    ys = -1 * yDim / 2
    zs = -1 * zDim / 2

    #####   Synapses

    synAmpaEE = oc.add_exp_one_syn(nml_doc,
                                   id="synAmpaEE",
                                   gbase="%snS" % Bee,
                                   erev="0mV",
                                   tau_decay="1ms")
    synAmpaEI = oc.add_exp_one_syn(nml_doc,
                                   id="synAmpaEI",
                                   gbase="%snS" % Bei,
                                   erev="0mV",
                                   tau_decay="1ms")

    synGabaIE = oc.add_exp_one_syn(nml_doc,
                                   id="synGabaIE",
                                   gbase="%snS" % abs(Bie),
                                   erev="-80mV",
                                   tau_decay="1ms")
    synGabaII = oc.add_exp_one_syn(nml_doc,
                                   id="synGabaII",
                                   gbase="%snS" % abs(Bii),
                                   erev="-80mV",
                                   tau_decay="1ms")

    synAmpaBkg = oc.add_exp_one_syn(nml_doc,
                                    id="synAmpaBkg",
                                    gbase="%snS" % Be_bkg,
                                    erev="0mV",
                                    tau_decay="1ms")
    synAmpaStim = oc.add_exp_one_syn(nml_doc,
                                     id="synAmpaStim",
                                     gbase="%snS" % Be_stim,
                                     erev="0mV",
                                     tau_decay="1ms")

    #####   Input types

    tpfsA = oc.add_transient_poisson_firing_synapse(
        nml_doc,
        id="tpsfA",
        average_rate="%s Hz" % r_bkg,
        delay='0ms',
        duration='%sms' % (Ttrans + Tblank),
        synapse_id=synAmpaBkg.id)

    tpfsB = oc.add_transient_poisson_firing_synapse(
        nml_doc,
        id="tpsfB",
        average_rate="%s Hz" % r_bkg,
        delay='%sms' % (Ttrans + Tblank),
        duration='%sms' % (Tstim),
        synapse_id=synAmpaBkg.id)

    tpfsC = oc.add_transient_poisson_firing_synapse(
        nml_doc,
        id="tpsfC",
        average_rate="%s Hz" % (r_bkg + r_stim),
        delay='%sms' % (Ttrans + Tblank),
        duration='%sms' % (Tstim),
        synapse_id=synAmpaStim.id)

    #####   Populations

    popExc = oc.add_population_in_rectangular_region(network,
                                                     'popExc',
                                                     exc_cell_id,
                                                     num_exc,
                                                     xs,
                                                     ys,
                                                     zs,
                                                     xDim,
                                                     yDim,
                                                     zDim,
                                                     color=exc_color)
    allExc = [popExc]

    if num_exc2 > 0:
        popExc2 = oc.add_population_in_rectangular_region(network,
                                                          'popExc2',
                                                          exc2_cell_id,
                                                          num_exc2,
                                                          xs,
                                                          ys,
                                                          zs,
                                                          xDim,
                                                          yDim,
                                                          zDim,
                                                          color=exc2_color)

        allExc.append(popExc2)

    popInh = oc.add_population_in_rectangular_region(network,
                                                     'popInh',
                                                     inh_cell_id,
                                                     num_inh,
                                                     xs,
                                                     ys,
                                                     zs,
                                                     xDim,
                                                     yDim,
                                                     zDim,
                                                     color=inh_color)
    allInh = [popInh]

    if num_inh2 > 0:
        popInh2 = oc.add_population_in_rectangular_region(network,
                                                          'popInh2',
                                                          inh2_cell_id,
                                                          num_inh2,
                                                          xs,
                                                          ys,
                                                          zs,
                                                          xDim,
                                                          yDim,
                                                          zDim,
                                                          color=inh2_color)

        allInh.append(popInh2)

    #####   Projections

    if connections:

        exc_exc_conn_prob = 0.15
        exc_inh_conn_prob = 0.15
        inh_exc_conn_prob = 1
        inh_inh_conn_prob = 1

        weight_expr = 'abs(normal(1,0.5))'

        for popEpr in allExc:

            for popEpo in allExc:
                proj = add_projection(network, "projEE", popEpr, popEpo,
                                      synAmpaEE.id, exc_exc_conn_prob,
                                      global_delay, exc_target_dendrites,
                                      weight_expr)

            for popIpo in allInh:
                proj = add_projection(network, "projEI", popEpr, popIpo,
                                      synAmpaEI.id, exc_inh_conn_prob,
                                      global_delay, exc_target_dendrites,
                                      weight_expr)

        for popIpr in allInh:

            for popEpo in allExc:
                proj = add_projection(network, "projIE", popIpr, popEpo,
                                      synGabaIE.id, inh_exc_conn_prob,
                                      global_delay, inh_target_dendrites,
                                      weight_expr)

            for popIpo in allInh:
                proj = add_projection(network, "projII", popIpr, popIpo,
                                      synGabaII.id, inh_inh_conn_prob,
                                      global_delay, inh_target_dendrites,
                                      weight_expr)

    #####   Inputs

    for pop in allExc:
        oc.add_inputs_to_population(network,
                                    "Stim_pre_%s" % pop.id,
                                    pop,
                                    tpfsA.id,
                                    all_cells=True)
    for pop in allInh:
        oc.add_inputs_to_population(network,
                                    "Stim_pre_%s" % pop.id,
                                    pop,
                                    tpfsA.id,
                                    all_cells=True)

    for pop in allExc:
        oc.add_inputs_to_population(network,
                                    "Stim_E_%s" % pop.id,
                                    pop,
                                    tpfsB.id,
                                    all_cells=True)

    for pop in allInh:

        num_inh_pert = int(pop.get_size() * fraction_inh_pert)

        oc.add_inputs_to_population(network,
                                    "Stim_I_pert_%s" % pop.id,
                                    pop,
                                    tpfsC.id,
                                    all_cells=False,
                                    only_cells=range(0, num_inh_pert))

        oc.add_inputs_to_population(network,
                                    "Stim_I_nonpert_%s" % pop.id,
                                    pop,
                                    tpfsB.id,
                                    all_cells=False,
                                    only_cells=range(num_inh_pert,
                                                     pop.get_size()))

    # Work in progress...
    # General idea: clamp one (or more) exc cell at rev pot of inh syn and see only exc inputs
    #
    if exc_clamp:

        vc = oc.add_voltage_clamp_triple(nml_doc,
                                         id="exc_clamp",
                                         delay='0ms',
                                         duration='%sms' % duration,
                                         conditioning_voltage=synGaba1.erev,
                                         testing_voltage=synGaba1.erev,
                                         return_voltage=synGaba1.erev,
                                         simple_series_resistance="1e5ohm",
                                         active="1")

        for pop in exc_clamp:
            oc.add_inputs_to_population(network,
                                        "exc_clamp_%s" % pop,
                                        network.get_by_id(pop),
                                        vc.id,
                                        all_cells=False,
                                        only_cells=exc_clamp[pop])

    #####   Save NeuroML and LEMS Simulation files

    nml_file_name = '%s.net.%s' % (network.id,
                                   'nml.h5' if format == 'hdf5' else 'nml')
    oc.save_network(nml_doc,
                    nml_file_name,
                    validate=(format == 'xml'),
                    format=format,
                    target_dir=target_dir)

    print("Saved to: %s" % nml_file_name)

    save_v = {}
    plot_v = {}

    if num_exc > 0:
        exc_traces = '%s_%s_v.dat' % (network.id, popExc.id)
        save_v[exc_traces] = []
        plot_v[popExc.id] = []

    if num_inh > 0:
        inh_traces = '%s_%s_v.dat' % (network.id, popInh.id)
        save_v[inh_traces] = []
        plot_v[popInh.id] = []

    if num_exc2 > 0:
        exc2_traces = '%s_%s_v.dat' % (network.id, popExc2.id)
        save_v[exc2_traces] = []
        plot_v[popExc2.id] = []

    if num_inh2 > 0:
        inh2_traces = '%s_%s_v.dat' % (network.id, popInh2.id)
        save_v[inh2_traces] = []
        plot_v[popInh2.id] = []

    for i in range(min(max_in_pop_to_plot_and_save, num_exc)):
        plot_v[popExc.id].append("%s/%i/%s/v" %
                                 (popExc.id, i, popExc.component))
        save_v[exc_traces].append("%s/%i/%s/v" %
                                  (popExc.id, i, popExc.component))

    for i in range(min(max_in_pop_to_plot_and_save, num_exc2)):
        plot_v[popExc2.id].append("%s/%i/%s/v" %
                                  (popExc2.id, i, popExc2.component))
        save_v[exc2_traces].append("%s/%i/%s/v" %
                                   (popExc2.id, i, popExc2.component))

    for i in range(min(max_in_pop_to_plot_and_save, num_inh)):
        plot_v[popInh.id].append("%s/%i/%s/v" %
                                 (popInh.id, i, popInh.component))
        save_v[inh_traces].append("%s/%i/%s/v" %
                                  (popInh.id, i, popInh.component))

    for i in range(min(max_in_pop_to_plot_and_save, num_inh2)):
        plot_v[popInh2.id].append("%s/%i/%s/v" %
                                  (popInh2.id, i, popInh2.component))
        save_v[inh2_traces].append("%s/%i/%s/v" %
                                   (popInh2.id, i, popInh2.component))

    gen_spike_saves_for_all_somas = True

    lems_file_name, lems_sim = oc.generate_lems_simulation(
        nml_doc,
        network,
        target_dir + nml_file_name,
        duration=duration,
        dt=dt,
        gen_plots_for_all_v=False,
        gen_plots_for_quantities=plot_v,
        gen_saves_for_all_v=False,
        gen_saves_for_quantities=save_v,
        gen_spike_saves_for_all_somas=gen_spike_saves_for_all_somas,
        target_dir=target_dir,
        report_file_name='report.txt')

    if run_in_simulator:

        print("Running %s for %sms in %s" %
              (lems_file_name, duration, run_in_simulator))

        traces, events = oc.simulate_network(lems_file_name,
                                             run_in_simulator,
                                             max_memory='4000M',
                                             nogui=True,
                                             load_saved_data=True,
                                             reload_events=True,
                                             plot=False,
                                             verbose=True,
                                             num_processors=num_processors)

        print("Reloaded traces: %s" % traces.keys())
        #print("Reloaded events: %s"%events.keys())

        use_events_for_rates = False

        exc_rate = 0
        inh_rate = 0

        if use_events_for_rates:
            if (run_in_simulator == 'jNeuroML_NetPyNE'):
                raise (
                    'Saving of spikes (and so calculation of rates) not yet supported in jNeuroML_NetPyNE'
                )
            for ek in events.keys():
                rate = 1000 * len(events[ek]) / float(duration)
                print("Cell %s has a rate %s Hz" % (ek, rate))
                if 'popExc' in ek:
                    exc_rate += rate / num_exc
                if 'popInh' in ek:
                    inh_rate += rate / num_inh

        else:
            tot_exc_rate = 0
            exc_cells = 0
            tot_inh_rate = 0
            inh_cells = 0
            tt = [t * 1000 for t in traces['t']]
            for tk in traces.keys():
                if tk != 't':
                    rate = get_rate_from_trace(tt,
                                               [v * 1000 for v in traces[tk]])
                    print("Cell %s has rate %s Hz" % (tk, rate))
                    if 'popExc' in tk:
                        tot_exc_rate += rate
                        exc_cells += 1
                    if 'popInh' in tk:
                        tot_inh_rate += rate
                        inh_cells += 1

            exc_rate = tot_exc_rate / exc_cells
            inh_rate = tot_inh_rate / inh_cells

        print("Run %s: Exc rate: %s Hz; Inh rate %s Hz" %
              (reference, exc_rate, inh_rate))

        return exc_rate, inh_rate, traces

    return nml_doc, nml_file_name, lems_file_name
Example #5
0
def generate(scalePops=1,
             percentage_exc_detailed=0,
             scalex=1,
             scaley=1,
             scalez=1,
             ratio_inh_exc=2,
             connections=True,
             duration=1000,
             input_rate=150,
             global_delay=2,
             max_in_pop_to_plot_and_save=5,
             format='xml',
             run_in_simulator=None):

    reference = ("Multiscale__g%s__i%s" % (ratio_inh_exc, input_rate)).replace(
        '.', '_')

    num_exc = scale_pop_size(80, scalePops)
    num_exc2 = int(0.5 + num_exc * percentage_exc_detailed / 100.0)
    num_exc -= num_exc2
    num_inh = scale_pop_size(40, scalePops)

    nml_doc, network = oc.generate_network(reference)

    oc.include_opencortex_cell(
        nml_doc, 'AllenInstituteCellTypesDB_HH/HH_477127614.cell.nml')
    oc.include_opencortex_cell(
        nml_doc, 'AllenInstituteCellTypesDB_HH/HH_476686112.cell.nml')
    oc.include_opencortex_cell(nml_doc,
                               'L23Pyr_SmithEtAl2013/L23_NoHotSpot.cell.nml')

    xDim = 1000 * scalex
    yDim = 300 * scaley
    zDim = 1000 * scalez

    xs = -200
    ys = -150
    zs = 100

    #####   Synapses

    exc_syn_nS = 1.

    synAmpa1 = oc.add_exp_two_syn(nml_doc,
                                  id="synAmpa1",
                                  gbase="%snS" % exc_syn_nS,
                                  erev="0mV",
                                  tau_rise="0.5ms",
                                  tau_decay="5ms")

    synGaba1 = oc.add_exp_two_syn(nml_doc,
                                  id="synGaba1",
                                  gbase="%snS" % (exc_syn_nS * ratio_inh_exc),
                                  erev="-80mV",
                                  tau_rise="1ms",
                                  tau_decay="20ms")

    #####   Input types

    pfs1 = oc.add_poisson_firing_synapse(nml_doc,
                                         id="psf1",
                                         average_rate="%s Hz" % input_rate,
                                         synapse_id=synAmpa1.id)

    #####   Populations

    popExc = oc.add_population_in_rectangular_region(network,
                                                     'popExc',
                                                     'HH_477127614',
                                                     num_exc,
                                                     xs,
                                                     ys,
                                                     zs,
                                                     xDim,
                                                     yDim,
                                                     zDim,
                                                     color='0 0 1')

    popExc2 = oc.add_population_in_rectangular_region(network,
                                                      'popExc2',
                                                      'L23_NoHotSpot',
                                                      num_exc2,
                                                      xs,
                                                      ys,
                                                      zs,
                                                      xDim,
                                                      yDim,
                                                      zDim,
                                                      color='0 1 0')

    allExc = [popExc, popExc2]

    popInh = oc.add_population_in_rectangular_region(network,
                                                     'popInh',
                                                     'HH_476686112',
                                                     num_inh,
                                                     xs,
                                                     ys,
                                                     zs,
                                                     xDim,
                                                     yDim,
                                                     zDim,
                                                     color='1 0 0')

    #####   Projections

    if connections:

        for pop1 in allExc:

            for pop2 in allExc:
                proj = oc.add_probabilistic_projection(network,
                                                       "proj0",
                                                       pop1,
                                                       pop2,
                                                       synAmpa1.id,
                                                       0.5,
                                                       delay=global_delay)

            proj = oc.add_probabilistic_projection(network,
                                                   "proj1",
                                                   pop1,
                                                   popInh,
                                                   synAmpa1.id,
                                                   0.7,
                                                   delay=global_delay)

            proj = oc.add_probabilistic_projection(network,
                                                   "proj2",
                                                   popInh,
                                                   pop1,
                                                   synGaba1.id,
                                                   0.7,
                                                   delay=global_delay)

        proj = oc.add_probabilistic_projection(network,
                                               "proj3",
                                               popInh,
                                               popInh,
                                               synGaba1.id,
                                               0.5,
                                               delay=global_delay)

    #####   Inputs

    for pop in allExc:
        oc.add_inputs_to_population(network,
                                    "Stim_%s" % pop.id,
                                    pop,
                                    pfs1.id,
                                    all_cells=True)

    #####   Save NeuroML and LEMS Simulation files

    target_dir = './temp/'

    nml_file_name = '%s.net.%s' % (network.id,
                                   'nml.h5' if format == 'hdf5' else 'nml')
    oc.save_network(nml_doc,
                    nml_file_name,
                    validate=(format == 'xml'),
                    format=format,
                    target_dir=target_dir)

    if format == 'xml':

        plot_v = {popExc.id: [], popExc2.id: [], popInh.id: []}
        exc_traces = '%s_%s_v.dat' % (network.id, popExc.id)
        exc2_traces = '%s_%s_v.dat' % (network.id, popExc2.id)
        inh_traces = '%s_%s_v.dat' % (network.id, popInh.id)
        save_v = {exc_traces: [], inh_traces: [], exc2_traces: []}

        for i in range(min(max_in_pop_to_plot_and_save, num_exc)):
            plot_v[popExc.id].append("%s/%i/%s/v" %
                                     (popExc.id, i, popExc.component))
            save_v[exc_traces].append("%s/%i/%s/v" %
                                      (popExc.id, i, popExc.component))

        for i in range(min(max_in_pop_to_plot_and_save, num_exc2)):
            plot_v[popExc2.id].append("%s/%i/%s/v" %
                                      (popExc2.id, i, popExc2.component))
            save_v[exc2_traces].append("%s/%i/%s/v" %
                                       (popExc2.id, i, popExc2.component))

        for i in range(min(max_in_pop_to_plot_and_save, num_inh)):
            plot_v[popInh.id].append("%s/%i/%s/v" %
                                     (popInh.id, i, popInh.component))
            save_v[inh_traces].append("%s/%i/%s/v" %
                                      (popInh.id, i, popInh.component))

        gen_spike_saves_for_all_somas = run_in_simulator != 'jNeuroML_NetPyNE'

        lems_file_name = oc.generate_lems_simulation(
            nml_doc,
            network,
            target_dir + nml_file_name,
            duration=duration,
            dt=0.025,
            gen_plots_for_all_v=False,
            gen_plots_for_quantities=plot_v,
            gen_saves_for_all_v=False,
            gen_saves_for_quantities=save_v,
            gen_spike_saves_for_all_somas=gen_spike_saves_for_all_somas,
            target_dir=target_dir)

        if run_in_simulator:

            print("Running %s in %s" % (lems_file_name, run_in_simulator))

            traces, events = oc.simulate_network(lems_file_name,
                                                 run_in_simulator,
                                                 max_memory='4000M',
                                                 nogui=True,
                                                 load_saved_data=True,
                                                 reload_events=True,
                                                 plot=False,
                                                 verbose=False)

            print("Reloaded traces: %s" % traces.keys())
            #print("Reloaded events: %s"%events.keys())

            use_events_for_rates = False

            exc_rate = 0
            inh_rate = 0

            if use_events_for_rates:
                if (run_in_simulator == 'jNeuroML_NetPyNE'):
                    raise (
                        'Saving of spikes (and so calculation of rates) not yet supported in jNeuroML_NetPyNE'
                    )
                for ek in events.keys():
                    rate = 1000 * len(events[ek]) / float(duration)
                    print("Cell %s has rate %s Hz" % (ek, rate))
                    if 'popExc' in ek:
                        exc_rate += rate / num_exc
                    if 'popInh' in ek:
                        inh_rate += rate / num_inh

            else:
                tot_exc_rate = 0
                exc_cells = 0
                tot_inh_rate = 0
                inh_cells = 0
                tt = [t * 1000 for t in traces['t']]
                for tk in traces.keys():
                    if tk != 't':
                        rate = get_rate_from_trace(
                            tt, [v * 1000 for v in traces[tk]])
                        print("Cell %s has rate %s Hz" % (tk, rate))
                        if 'popExc' in tk:
                            tot_exc_rate += rate
                            exc_cells += 1
                        if 'popInh' in tk:
                            tot_inh_rate += rate
                            inh_cells += 1

                exc_rate = tot_exc_rate / exc_cells
                inh_rate = tot_inh_rate / inh_cells

            print("Run %s: Exc rate: %s Hz; Inh rate %s Hz" %
                  (reference, exc_rate, inh_rate))

            return exc_rate, inh_rate, traces

    else:
        lems_file_name = None

    return nml_doc, nml_file_name, lems_file_name
def RunColumnSimulation(net_id="TestRunColumn",
                        nml2_source_dir="../../../neuroConstruct/generatedNeuroML2/",
                        sim_config="TempSimConfig",
                        scale_cortex=0.1,
                        scale_thalamus=0.1,
                        cell_bodies_overlap=True,
                        cylindrical=True,
                        default_synaptic_delay=0.05,
                        gaba_scaling=1.0,
                        l4ss_ampa_scaling=1.0,
                        l5pyr_gap_scaling =1.0,
                        in_nrt_tcr_nmda_scaling =1.0,
                        pyr_ss_nmda_scaling=1.0,
                        deep_bias_current=-1,
                        include_gap_junctions=True,
                        which_cell_types_to_include='all',
                        dir_nml2="../../",
                        backgroundL5Rate=30, # Hz
                        backgroundL23Rate=30, # Hz
                        duration=300,
                        dt=0.025,
                        max_memory='1000M',
                        seed=1234,
                        simulator=None,
                        save_format='xml',
                        num_of_cylinder_sides=None):
              
                        
    popDictFull = {}
    
    ##############   Full model ##################################
    
    popDictFull['CG3D_L23PyrRS'] = (1000, 'L23','L23PyrRS','multi', occ.L23_PRINCIPAL_CELL)
    popDictFull['CG3D_L23PyrFRB']= (50,'L23','L23PyrFRB_varInit','multi', occ.L23_PRINCIPAL_CELL_2)
    
    popDictFull['CG3D_SupBask'] = (90, 'L23','SupBasket','multi', occ.L23_INTERNEURON)  # over both l23 & l4
    popDictFull['CG3D_SupAxAx'] = (90, 'L23','SupAxAx','multi', occ.L23_INTERNEURON_2)  # over both l23 & l4
    popDictFull['CG3D_SupLTS']= (90,'L23','SupLTSInter','multi', occ.L4_INTERNEURON)    # over both l23 & l4
    
    popDictFull['CG3D_L4SpinStell']= (240,'L4','L4SpinyStellate','multi', occ.L4_PRINCIPAL_CELL)
    
    popDictFull['CG3D_L5TuftIB'] = (800, 'L5','L5TuftedPyrIB','multi', occ.L5_PRINCIPAL_CELL)
    popDictFull['CG3D_L5TuftRS']= (200,'L5','L5TuftedPyrRS','multi', occ.L5_PRINCIPAL_CELL_2)     
    
    popDictFull['CG3D_L6NonTuftRS']= (500,'L6','L6NonTuftedPyrRS','multi', occ.L6_PRINCIPAL_CELL)
    
    popDictFull['CG3D_DeepAxAx']= (100,'L6','DeepAxAx','multi', occ.L5_INTERNEURON)     # over both l5 & l6
    popDictFull['CG3D_DeepBask']= (100,'L6','DeepBasket','multi', occ.L5_INTERNEURON_2)   # over both l5 & l6
    popDictFull['CG3D_DeepLTS']= (100,'L6','DeepLTSInter','multi', occ.L6_INTERNEURON)  # over both l5 & l6
    
    popDictFull['CG3D_nRT']= (100,'Thalamus','nRT','multi', occ.THALAMUS_1)
    popDictFull['CG3D_TCR']= (100,'Thalamus','TCR','multi', occ.THALAMUS_2)
    
    ###############################################################
    
    dir_to_cells=os.path.join(dir_nml2,"cells")
    
    dir_to_synapses=os.path.join(dir_nml2,"synapses")
    
    dir_to_gap_junctions=os.path.join(dir_nml2,"gapJunctions")
    
    popDict={}
    
    cell_model_list=[]
    
    cell_diameter_dict={}
    
    nml_doc, network = oc.generate_network(net_id,seed)
    
    for cell_population in popDictFull.keys():
    
        include_cell_population=False
        
        cell_model=popDictFull[cell_population][2]
    
        if which_cell_types_to_include=='all' or cell_model in which_cell_types_to_include:
        
           popDict[cell_population]=()

           if popDictFull[cell_population][1] !='Thalamus':
             
              popDict[cell_population]=(int(round(scale_cortex*popDictFull[cell_population][0])), 
                                        popDictFull[cell_population][1],
                                        popDictFull[cell_population][2],
                                        popDictFull[cell_population][3],
                                        popDictFull[cell_population][4])
                  
              cell_count=int(round(scale_cortex*popDictFull[cell_population][0]))
                
           else:
             
              popDict[cell_population]=(int(round(scale_thalamus*popDictFull[cell_population][0])),
                                        popDictFull[cell_population][1],
                                        popDictFull[cell_population][2],
                                        popDictFull[cell_population][3],
                                        popDictFull[cell_population][4])
                  
              cell_count=int(round(scale_thalamus*popDictFull[cell_population][0]))
           
           if cell_count !=0:
    
              include_cell_population=True
               
        if include_cell_population:
        
           cell_model_list.append(popDictFull[cell_population][2])
           
           cell_diameter=oc_build.get_soma_diameter(popDictFull[cell_population][2],dir_to_cell=dir_to_cells)
           
           if popDictFull[cell_population][2] not in cell_diameter_dict.keys():
           
              cell_diameter_dict[popDictFull[cell_population][2]]=cell_diameter
           
           
    cell_model_list_final=list(set(cell_model_list))
    
    opencortex.print_comment_v("This is a final list of cell model ids: %s"%cell_model_list_final)
    
    copy_nml2_from_source=False
    
    for cell_model in cell_model_list_final:
    
       if not os.path.exists(os.path.join(dir_to_cells,"%s.cell.nml"%cell_model)):
       
          copy_nml2_from_source=True
          
          break
           
    if copy_nml2_from_source:
       
       oc_build.copy_nml2_source(dir_to_project_nml2=dir_nml2,
                        primary_nml2_dir=nml2_source_dir,
                        electrical_synapse_tags=['Elect'],
                        chemical_synapse_tags=['.synapse.'],
                        extra_channel_tags=['cad'])
                        
       passed_includes_in_cells=oc_utils.check_includes_in_cells(dir_to_cells,cell_model_list_final,extra_channel_tags=['cad'])
       
       if not passed_includes_in_cells:
       
          opencortex.print_comment_v("Execution of RunColumn.py will terminate.")
  
          quit()
             
    for cell_model in cell_model_list_final:
        
        oc_build._add_cell_and_channels(nml_doc, os.path.join(dir_to_cells,"%s.cell.nml"%cell_model), cell_model, use_prototypes=False)
        
    t1=-0
    t2=-250
    t3=-250
    t4=-200.0
    t5=-300.0
    t6=-300.0
    t7=-200.0
    t8=-200.0

    boundaries={}

    boundaries['L1']=[0,t1]
    boundaries['L23']=[t1,t1+t2+t3]
    boundaries['L4']=[t1+t2+t3,t1+t2+t3+t4]
    boundaries['L5']=[t1+t2+t3+t4,t1+t2+t3+t4+t5]
    boundaries['L6']=[t1+t2+t3+t4+t5,t1+t2+t3+t4+t5+t6]
    boundaries['Thalamus']=[t1+t2+t3+t4+t5+t6+t7,t1+t2+t3+t4+t5+t6+t7+t8]
    
    xs = [0,500]
    zs = [0,500] 
    
    passed_pops=oc_utils.check_pop_dict_and_layers(pop_dict=popDict,boundary_dict=boundaries)
    
    if passed_pops:
    
       opencortex.print_comment_v("Population parameters were specified correctly.") 
       
       if cylindrical:
       
          pop_params=oc_utils.add_populations_in_cylindrical_layers(network,boundaries,popDict,radiusOfCylinder=250,cellBodiesOverlap=cell_bodies_overlap,
                                                                    cellDiameterArray=cell_diameter_dict,numOfSides=num_of_cylinder_sides)
                                                                 
       else:
                                                                 
          pop_params=oc_utils.add_populations_in_rectangular_layers(network,boundaries,popDict,xs,zs,cellBodiesOverlap=False,cellDiameterArray=cell_diameter_dict)
       
    else:
    
       opencortex.print_comment_v("Population parameters were specified incorrectly; execution of RunColumn.py will terminate.")
       
       quit() 
    
    src_files = os.listdir("./")
    
    if 'netConnList' in src_files:
    
       full_path_to_connectivity='netConnList'
       
    else:
    
       full_path_to_connectivity="../../../neuroConstruct/pythonScripts/netbuild/netConnList"
                   
    weight_params=[{'weight':gaba_scaling,'synComp':'GABAA','synEndsWith':[],'targetCellGroup':[]},
                   {'weight':l4ss_ampa_scaling,'synComp':'Syn_AMPA_L4SS_L4SS','synEndsWith':[],'targetCellGroup':[]},
                   {'weight':l5pyr_gap_scaling,'synComp':'Syn_Elect_DeepPyr_DeepPyr','synEndsWith':[],'targetCellGroup':['CG3D_L5']},
                   {'weight':in_nrt_tcr_nmda_scaling,'synComp':'NMDA','synEndsWith':["_IN","_DeepIN","_SupIN","_SupFS","_DeepFS","_SupLTS","_DeepLTS","_nRT","_TCR"],
                   'targetCellGroup':[]},
                   {'weight':pyr_ss_nmda_scaling,'synComp':'NMDA','synEndsWith':["_IN","_DeepIN","_SupIN","_SupFS","_DeepFS","_SupLTS","_DeepLTS","_nRT","_TCR"],
                   'targetCellGroup':[]}]
                   
    delay_params=[{'delay':default_synaptic_delay,'synComp':'all'}]

    passed_weight_params=oc_utils.check_weight_params(weight_params)
    
    passed_delay_params=oc_utils.check_delay_params(delay_params)
    
    if passed_weight_params and passed_delay_params:    
    
       opencortex.print_comment_v("Synaptic weight and delay parameters were specified correctly.")     
       
       ignore_synapses = []
       if not include_gap_junctions:
           ignore_synapses = ['Syn_Elect_SupPyr_SupPyr','Syn_Elect_CortIN_CortIN','Syn_Elect_L4SS_L4SS','Syn_Elect_DeepPyr_DeepPyr','Syn_Elect_nRT_nRT']
    
       all_synapse_components,projArray,cached_segment_dicts=oc_utils.build_connectivity(net=network,
                                                                                         pop_objects=pop_params,
                                                                                         path_to_cells=dir_to_cells,
                                                                                         full_path_to_conn_summary=full_path_to_connectivity,
                                                                                         pre_segment_group_info=[{'PreSegGroup':"distal_axon",'ProjType':'Chem'}],
                                                                                         synaptic_scaling_params=weight_params,
                                                                                         synaptic_delay_params=delay_params,
                                                                                         ignore_synapses=ignore_synapses)   
                                                                                         
    else:
       
       if not passed_weight_params:
       
          opencortex.print_comment_v("Synaptic weight parameters were specified incorrectly; execution of RunColumn.py will terminate.") 
          
       if not passed_delay_params:
       
          opencortex.print_comment_v("Synaptic delay parameters were specified incorrectly; execution of RunColumn.py will terminate.")
       
       quit()
    
    ############ for testing only; will add original specifications later ##############################################################
    
    if sim_config=="Testing1":
       
       input_params={'CG3D_L23PyrRS':[{'InputType':'GeneratePoissonTrains',
                          'InputName':'Poi_CG3D_L23PyrRS',
                          'TrainType':'transient',
                          'Synapse':'Syn_AMPA_SupPyr_SupPyr',
                          'AverageRateList':[200.0,150.0],
                          'RateUnits':'Hz',
                          'TimeUnits':'ms',
                          'DurationList':[100.0,50.0],
                          'DelayList':[50.0,200.0],
                          'FractionToTarget':1.0,
                          'LocationSpecific':False,
                          'TargetDict':{'soma_group':1 }       }]              }
                       
    ###################################################################################################################################
    
    if sim_config=="Testing2":
    
       input_params_final={'CG3D_L23PyrRS':[{'InputType':'PulseGenerators',
                           'InputName':"DepCurr_L23RS",
                           'Noise':True,
                           'SmallestAmplitudeList':[5.0E-5,1.0E-5],
                           'LargestAmplitudeList':[1.0E-4,2.0E-5],
                           'DurationList':[20000.0,20000.0],
                           'DelayList':[0.0,20000.0],
                           'TimeUnits':'ms',
                           'AmplitudeUnits':'uA',
                           'FractionToTarget':1.0,
                           'LocationSpecific':False,
                           'TargetDict':{'dendrite_group':1}             }]             } 
                     
    if sim_config=="TempSimConfig":
    
       input_params ={'CG3D_L23PyrRS':[{'InputType':'PulseGenerators',
                     'InputName':"DepCurr_L23RS",
                     'Noise':True,
                     'SmallestAmplitudeList':[5.0E-5],
                     'LargestAmplitudeList':[1.0E-4],
                     'DurationList':[20000.0],
                     'DelayList':[0.0],
                     'TimeUnits':'ms',
                     'AmplitudeUnits':'uA',
                     'FractionToTarget':1.0,
                     'LocationSpecific':False,
                     'UniversalTargetSegmentID':0,
                     'UniversalFractionAlong':0.5},
                     
                      {'InputType':'GeneratePoissonTrains',
                     'InputName':"BackgroundL23RS",
                     'TrainType':'persistent',
                     'Synapse':'Syn_AMPA_SupPyr_SupPyr',
                     'AverageRateList':[float(backgroundL23Rate)],
                     'RateUnits':'Hz',
                     'FractionToTarget':1.0,
                     'LocationSpecific':False,
                     'TargetDict':{'dendrite_group':100} },
                     
                     {'InputType':'GeneratePoissonTrains',
                     'InputName':"EctopicStimL23RS",
                     'TrainType':'persistent',
                     'Synapse':'SynForEctStim',
                     'AverageRateList':[0.1],
                     'RateUnits':'Hz',
                     'FractionToTarget':1.0,
                     'LocationSpecific':False,
                     'UniversalTargetSegmentID':143,
                     'UniversalFractionAlong':0.5} ],
                     
                     'CG3D_TCR':[{'InputType':'GeneratePoissonTrains',
                     'InputName':"EctopicStimTCR",
                     'TrainType':'persistent',
                     'Synapse':'SynForEctStim',
                     'AverageRateList':[1.0],
                     'RateUnits':'Hz',
                     'FractionToTarget':1.0,
                     'LocationSpecific':False,
                     'UniversalTargetSegmentID':269,
                     'UniversalFractionAlong':0.5},
                     
                     {'InputType':'GeneratePoissonTrains',
                     'InputName':"Input_20",
                     'TrainType':'persistent',
                     'Synapse':'Syn_AMPA_L6NT_TCR',
                     'AverageRateList':[50.0],
                     'RateUnits':'Hz',
                     'FractionToTarget':1.0,
                     'LocationSpecific':False,
                     'TargetDict':{'dendrite_group':100} }],  
                     
                     'CG3D_L23PyrFRB':[{'InputType':'GeneratePoissonTrains',
                     'InputName':"EctopicStimL23FRB",
                     'TrainType':'persistent',
                     'Synapse':'SynForEctStim',
                     'AverageRateList':[0.1],
                     'RateUnits':'Hz',
                     'FractionToTarget':1.0,
                     'LocationSpecific':False,
                     'UniversalTargetSegmentID':143,
                     'UniversalFractionAlong':0.5},
                     
                     {'InputType':'PulseGenerators',
                     'InputName':"DepCurr_L23FRB",
                     'Noise':True,
                     'SmallestAmplitudeList':[2.5E-4],
                     'LargestAmplitudeList':[3.5E-4],
                     'DurationList':[20000.0],
                     'DelayList':[0.0],
                     'TimeUnits':'ms',
                     'AmplitudeUnits':'uA',
                     'FractionToTarget':1.0,
                     'LocationSpecific':False,
                     'UniversalTargetSegmentID':0,
                     'UniversalFractionAlong':0.5} ], 
                     
                     'CG3D_L6NonTuftRS':[{'InputType':'GeneratePoissonTrains',
                     'InputName':"EctopicStimL6NT",
                     'TrainType':'persistent',
                     'Synapse':'SynForEctStim',
                     'AverageRateList':[1.0],
                     'RateUnits':'Hz',
                     'FractionToTarget':1.0,
                     'LocationSpecific':False,
                     'UniversalTargetSegmentID':95,
                     'UniversalFractionAlong':0.5},
                     
                     {'InputType':'PulseGenerators',
                     'InputName':"DepCurr_L6NT",
                     'Noise':True,
                     'SmallestAmplitudeList':[5.0E-5],
                     'LargestAmplitudeList':[1.0E-4],
                     'DurationList':[20000.0],
                     'DelayList':[0.0],
                     'TimeUnits':'ms',
                     'AmplitudeUnits':'uA',
                     'FractionToTarget':1.0,
                     'LocationSpecific':False,
                     'UniversalTargetSegmentID':0,
                     'UniversalFractionAlong':0.5} ],
                     
                     'CG3D_L4SpinStell':[{'InputType':'PulseGenerators',
                     'InputName':"DepCurr_L4SS",
                     'Noise':True,
                     'SmallestAmplitudeList':[5.0E-5],
                     'LargestAmplitudeList':[1.0E-4],
                     'DurationList':[20000.0],
                     'DelayList':[0.0],
                     'TimeUnits':'ms',
                     'AmplitudeUnits':'uA',
                     'FractionToTarget':1.0,
                     'LocationSpecific':False,
                     'UniversalTargetSegmentID':0,
                     'UniversalFractionAlong':0.5}],
                     
                     'CG3D_L5TuftIB':[{'InputType':'GeneratePoissonTrains',
                     'InputName':"BackgroundL5",
                     'TrainType':'persistent',
                     'Synapse':'Syn_AMPA_L5RS_L5Pyr',
                     'AverageRateList':[float(backgroundL5Rate)],
                     'RateUnits':'Hz',
                     'FractionToTarget':1.0,
                     'LocationSpecific':False,
                     'TargetDict':{'dendrite_group':100} },
                     
                     {'InputType':'GeneratePoissonTrains',
                     'InputName':"EctopicStimL5IB",
                     'TrainType':'persistent',
                     'Synapse':'SynForEctStim',
                     'AverageRateList':[1.0],
                     'RateUnits':'Hz',
                     'FractionToTarget':1.0,
                     'LocationSpecific':False,
                     'UniversalTargetSegmentID':119,
                     'UniversalFractionAlong':0.5},
                     
                      {'InputType':'PulseGenerators',
                     'InputName':"DepCurr_L5IB",
                     'Noise':True,
                     'SmallestAmplitudeList':[5.0E-5],
                     'LargestAmplitudeList':[1.0E-4],
                     'DurationList':[20000.0],
                     'DelayList':[0.0],
                     'TimeUnits':'ms',
                     'AmplitudeUnits':'uA',
                     'FractionToTarget':1.0,
                     'LocationSpecific':False,
                     'UniversalTargetSegmentID':0,
                     'UniversalFractionAlong':0.5} ],
                     
                     'CG3D_L5TuftRS':[{'InputType':'GeneratePoissonTrains',
                     'InputName':"EctopicStimL5RS",
                     'TrainType':'persistent',
                     'Synapse':'SynForEctStim',
                     'AverageRateList':[1.0],
                     'RateUnits':'Hz',
                     'FractionToTarget':1.0,
                     'LocationSpecific':False,
                     'UniversalTargetSegmentID':119,
                     'UniversalFractionAlong':0.5},
                     
                      {'InputType':'PulseGenerators',
                     'InputName':"DepCurr_L5RS",
                     'Noise':True,
                     'SmallestAmplitudeList':[5.0E-5],
                     'LargestAmplitudeList':[1.0E-4],
                     'DurationList':[20000.0],
                     'DelayList':[0.0],
                     'TimeUnits':'ms',
                     'AmplitudeUnits':'uA',
                     'FractionToTarget':1.0,
                     'LocationSpecific':False,
                     'UniversalTargetSegmentID':0,
                     'UniversalFractionAlong':0.5}  ]   }
                     
       input_params_final={}
       
       for pop_id in pop_params.keys():
          
           if pop_id in input_params.keys():
       
              input_params_final[pop_id]=input_params[pop_id]
                     
       if deep_bias_current >= 0:
    
          for cell_group in input_params_final.keys():
       
              for input_group in range(0,len(input_params_final[cell_group])):
              
                  check_type=input_params_final[cell_group][input_group]['InputType']=="PulseGenerators"
                  
                  check_group_1= cell_group=="CG3D_L5TuftIB"
                  
                  check_group_2=cell_group =="CG3D_L5TuftRS"
                  
                  check_group_3= cell_group =="CG3D_L6NonTuftRS"
           
                  if check_type and (check_group_1 or check_group_2 or check_group_3):
	    
	             opencortex.print_comment_v("Changing offset current in 'PulseGenerators' for %s to %f"%(cell_group, deep_bias_current))
	      
	             input_params_final[cell_group][input_group]['SmallestAmplitudeList']=[ (deep_bias_current-0.05)/1000 ] 
	              
	             input_params_final[cell_group][input_group]['LargestAmplitudeList']=[ (deep_bias_current+0.05)/1000 ]
                     
    input_list_array_final, input_synapse_list=oc_utils.build_inputs(nml_doc=nml_doc,
                                                                     net=network,
                                                                     population_params=pop_params,
                                                                     input_params=input_params_final,
                                                                     cached_dicts=cached_segment_dicts,
                                                                     path_to_cells=dir_to_cells,
                                                                     path_to_synapses=dir_to_synapses)
    
    ####################################################################################################################################
    
    for input_synapse in input_synapse_list:
    
        if input_synapse not in all_synapse_components:
        
           all_synapse_components.append(input_synapse)
           
    synapse_list=[]
    
    gap_junction_list=[]
        
    for syn_ind in range(0,len(all_synapse_components)):
    
        if 'Elect' not in all_synapse_components[syn_ind]:
        
           synapse_list.append(all_synapse_components[syn_ind])
        
           all_synapse_components[syn_ind]=os.path.join(net_id,all_synapse_components[syn_ind]+".synapse.nml")
           
        else:
        
           gap_junction_list.append(all_synapse_components[syn_ind])
        
           all_synapse_components[syn_ind]=os.path.join(net_id,all_synapse_components[syn_ind]+".nml")
           
    oc_build.add_synapses(nml_doc,dir_to_synapses,synapse_list,synapse_tag=True)
    
    oc_build.add_synapses(nml_doc,dir_to_gap_junctions,gap_junction_list,synapse_tag=False)
    
    nml_file_name = '%s.net.nml'%network.id
    validate=True
    if save_format=='hdf5':
        nml_file_name += '.h5'
        validate=False
        
    
    oc.save_network(nml_doc, nml_file_name, validate=validate,max_memory=max_memory, format=save_format)
    
    oc_build.remove_component_dirs(dir_to_project_nml2="%s"%network.id,list_of_cell_ids=cell_model_list_final,extra_channel_tags=['cad'])
    
    lems_file_name=oc.generate_lems_simulation(nml_doc, 
                                               network, 
                                               nml_file_name, 
                                               duration =duration, 
                                               dt =dt,
                                               include_extra_lems_files=all_synapse_components)
     
    if simulator != None:                                          
                                               
       opencortex.print_comment_v("Starting simulation of %s.net.nml"%net_id)
                            
       oc.simulate_network(lems_file_name=lems_file_name,
                           simulator=simulator,
                           max_memory=max_memory)
Example #7
0
def generate(
        scale_populations=1,
        percentage_exc_detailed=0,
        #exc2_cell = 'SmithEtAl2013/L23_Retuned_477127614',
        exc2_cell='SmithEtAl2013/L23_NoHotSpot',
        #exc2_cell = 'BBP/cADpyr229_L23_PC_5ecbf9b163_0_0',
        #exc2_cell = 'BBP/cNAC187_L23_NBC_9d37c4b1f8_0_0',
        #exc2_cell = 'Thalamocortical/L23PyrRS',
        percentage_inh_detailed=0,
        scalex=1,
        scaley=1,
        scalez=1,
        exc_exc_conn_prob=0.25,
        exc_inh_conn_prob=0.25,
        inh_exc_conn_prob=0.75,
        inh_inh_conn_prob=0.75,
        ee2_conn_prob=0,
        ie2_conn_prob=0,
        Bee=.1,
        Bei=.1,
        Bie=-.2,
        Bii=-.2,
        Bee2=1,
        Bie2=-2,
        Be_bkg=.1,
        Be_stim=.1,
        r_bkg=0,
        r_bkg_ExtExc=0,
        r_bkg_ExtInh=0,
        r_bkg_ExtExc2=0,
        r_stim=0,
        fraction_inh_pert=0.75,
        Ttrans=500,  # transitent time to discard the data (ms)
        Tblank=1500,  # simulation time before perturbation (ms)
        Tstim=1500,  # simulation time of perturbation (ms)
        Tpost=500,  # simulation time after perturbation (ms)
        connections=True,
        connections2=False,
        exc_target_dendrites=False,
        inh_target_dendrites=False,
        duration=1000,
        dt=0.025,
        global_delay=.1,
        max_in_pop_to_plot_and_save=10,
        format='xml',
        suffix='',
        run_in_simulator=None,
        num_processors=1,
        target_dir='./temp/',
        v_clamp=False,
        simulation_seed=11111):

    reference = ("ISN_net%s" % (suffix)).replace('.', '_')

    ks = open('kernelseed', 'w')
    ks.write('%i' % simulation_seed)
    ks.close()

    info = ('  Generating ISN network: %s\n' % reference)
    info += (
        '    Duration: %s; dt: %s; scale: %s; simulator: %s (num proc. %s)\n' %
        (duration, dt, scale_populations, run_in_simulator, num_processors))
    info += ('    Bee: %s; Bei: %s; Bie: %s; Bii: %s\n' % (Bee, Bei, Bie, Bii))
    info += ('    Bkg exc at %sHz\n' % (r_bkg_ExtExc))
    info += ('    Bkg inh at %sHz\n' % (r_bkg_ExtInh))
    info += ('    Be_stim: %s at %sHz (i.e. %sHz for %s perturbed I cells)\n' %
             (Be_stim, r_stim, r_bkg_ExtInh + r_stim, fraction_inh_pert))
    info += ('    Exc detailed: %s%% - Inh detailed %s%%\n' %
             (percentage_exc_detailed, percentage_inh_detailed))
    info += ('    Seed: %s' % (simulation_seed))

    print('-------------------------------------------------')
    print(info)
    print('-------------------------------------------------')

    num_exc = scale_pop_size(np.round(100 * exc_inh_fraction),
                             scale_populations)
    num_exc2 = int(math.ceil(num_exc * percentage_exc_detailed / 100.0))
    num_exc -= num_exc2

    num_inh = scale_pop_size(np.round(100 * (1 - exc_inh_fraction)),
                             scale_populations)
    num_inh2 = int(math.ceil(num_inh * percentage_inh_detailed / 100.0))
    num_inh -= num_inh2

    nml_doc, network = oc.generate_network(reference,
                                           network_seed=simulation_seed)
    nml_doc.notes = info
    network.notes = info

    #exc_cell_id = 'AllenHH_480351780'
    #exc_cell_id = 'AllenHH_477127614'
    #exc_cell_id = 'HH_477127614'
    exc_cell_id = 'HH2_477127614'
    exc_type = exc_cell_id.split('_')[0]
    oc.include_neuroml2_cell_and_channels(
        nml_doc, 'cells/%s/%s.cell.nml' % (exc_type, exc_cell_id), exc_cell_id)

    #inh_cell_id = 'AllenHH_485058595'
    #inh_cell_id = 'AllenHH_476686112'
    #inh_cell_id = 'AllenHH_477127614'
    #inh_cell_id = 'HH_476686112'
    inh_cell_id = 'HH2_476686112'
    inh_type = exc_cell_id.split('_')[0]
    oc.include_neuroml2_cell_and_channels(
        nml_doc, 'cells/%s/%s.cell.nml' % (inh_type, inh_cell_id), inh_cell_id)

    if percentage_exc_detailed > 0:
        exc2_cell_id = exc2_cell.split('/')[1]
        exc2_cell_dir = exc2_cell.split('/')[0]
        oc.include_neuroml2_cell_and_channels(
            nml_doc, 'cells/%s/%s.cell.nml' % (exc2_cell_dir, exc2_cell_id),
            exc2_cell_id)

    if percentage_inh_detailed > 0:
        inh2_cell_id = 'cNAC187_L23_NBC_9d37c4b1f8_0_0'
        oc.include_neuroml2_cell_and_channels(
            nml_doc, 'cells/BBP/%s.cell.nml' % inh2_cell_id, inh2_cell_id)

    xDim = 700 * scalex
    yDim = 100 * scaley
    yDimExc2 = 50 * scaley
    zDim = 700 * scalez

    xs = -1 * xDim / 2
    ys = -1 * yDim / 2
    zs = -1 * zDim / 2

    #####   Synapses

    synAmpaEE = oc.add_exp_one_syn(nml_doc,
                                   id="ampaEE",
                                   gbase="%snS" % Bee,
                                   erev="0mV",
                                   tau_decay="1ms")
    synAmpaEI = oc.add_exp_one_syn(nml_doc,
                                   id="ampaEI",
                                   gbase="%snS" % Bei,
                                   erev="0mV",
                                   tau_decay="1ms")

    synGabaIE = oc.add_exp_one_syn(nml_doc,
                                   id="gabaIE",
                                   gbase="%snS" % abs(Bie),
                                   erev="-80mV",
                                   tau_decay="2ms")
    synGabaII = oc.add_exp_one_syn(nml_doc,
                                   id="gabaII",
                                   gbase="%snS" % abs(Bii),
                                   erev="-80mV",
                                   tau_decay="2ms")

    synAmpaBkg = oc.add_exp_one_syn(nml_doc,
                                    id="ampaBkg",
                                    gbase="%snS" % Be_bkg,
                                    erev="0mV",
                                    tau_decay="1ms")
    #synAmpaStim = oc.add_exp_one_syn(nml_doc, id="ampaStim", gbase="%snS"%Be_stim,
    #                         erev="0mV", tau_decay="1ms")

    synAmpaEE2 = oc.add_exp_one_syn(nml_doc,
                                    id="ampaEE2",
                                    gbase="%snS" % Bee2,
                                    erev="0mV",
                                    tau_decay="10ms")
    synGabaIE2 = oc.add_exp_one_syn(nml_doc,
                                    id="gabaIE2",
                                    gbase="%snS" % abs(Bie2),
                                    erev="-80mV",
                                    tau_decay="10ms")

    #####   Input types
    '''tpfsA = oc.add_transient_poisson_firing_synapse(nml_doc,
                                       id="tpsfA",
                                       average_rate="%s Hz"%r_bkg,
                                       delay = '0ms', 
                                       duration = '%sms'%(Ttrans+Tblank),
                                       synapse_id=synAmpaBkg.id)

    tpfsB = oc.add_transient_poisson_firing_synapse(nml_doc,
                                       id="tpsfB",
                                       average_rate="%s Hz"%r_bkg,
                                       delay = '%sms'%(Ttrans+Tblank),
                                       duration = '%sms'%(Tstim),
                                       synapse_id=synAmpaBkg.id)

    tpfsC = oc.add_transient_poisson_firing_synapse(nml_doc,
                                       id="tpsfC",
                                       average_rate="%s Hz"%(r_bkg+r_stim),
                                       delay = '%sms'%(Ttrans+Tblank),
                                       duration = '%sms'%(Tstim),
                                       synapse_id=synAmpaStim.id)'''

    tpfsExtExc = oc.add_transient_poisson_firing_synapse(
        nml_doc,
        id="tpfsExtExc",
        average_rate="%s Hz" % r_bkg_ExtExc,
        delay='0ms',
        duration='%sms' % (Ttrans + Tblank + Tstim + Tpost),
        synapse_id=synAmpaBkg.id)

    tpfsExtExc2 = oc.add_transient_poisson_firing_synapse(
        nml_doc,
        id="tpfsExtExc2",
        average_rate="%s Hz" % r_bkg_ExtExc2,
        delay='0ms',
        duration='%sms' % (Ttrans + Tblank + Tstim + Tpost),
        synapse_id=synAmpaBkg.id)

    tpfsExtInh = oc.add_transient_poisson_firing_synapse(
        nml_doc,
        id="tpfsExtInh",
        average_rate="%s Hz" % r_bkg_ExtInh,
        delay='0ms',
        duration='%sms' % (Ttrans + Tblank + Tstim + Tpost),
        synapse_id=synAmpaBkg.id)

    tpfsPertInh_before = oc.add_transient_poisson_firing_synapse(
        nml_doc,
        id="tpfsPertInh_before",
        average_rate="%s Hz" % r_bkg_ExtInh,
        delay='0ms',
        duration='%sms' % (Ttrans + Tblank),
        synapse_id=synAmpaBkg.id)
    tpfsPertInh_during = oc.add_transient_poisson_firing_synapse(
        nml_doc,
        id="tpfsPertInh_during",
        average_rate="%s Hz" % (r_bkg_ExtInh + r_stim),
        delay='%sms' % (Ttrans + Tblank),
        duration='%sms' % (Tstim),
        synapse_id=synAmpaBkg.id)
    tpfsPertInh_after = oc.add_transient_poisson_firing_synapse(
        nml_doc,
        id="tpfsPertInh_after",
        average_rate="%s Hz" % r_bkg_ExtInh,
        delay='%sms' % (Ttrans + Tblank + Tstim),
        duration='%sms' % (Tpost),
        synapse_id=synAmpaBkg.id)

    #####   Populations

    popExc = oc.add_population_in_rectangular_region(network,
                                                     'popExc',
                                                     exc_cell_id,
                                                     num_exc,
                                                     xs,
                                                     ys,
                                                     zs,
                                                     xDim,
                                                     yDim,
                                                     zDim,
                                                     color=exc_color)
    from neuroml import Property
    popExc.properties.append(Property('type', 'E'))
    allExc = [popExc]

    if num_exc2 > 0:
        popExc2 = oc.add_population_in_rectangular_region(network,
                                                          'popExc2',
                                                          exc2_cell_id,
                                                          num_exc2,
                                                          xs,
                                                          yDim / 2,
                                                          zs,
                                                          xDim,
                                                          yDimExc2,
                                                          zDim,
                                                          color=exc2_color)
        popExc2.properties.append(Property('type', 'E'))

        allExc.append(popExc2)

    popInh = oc.add_population_in_rectangular_region(network,
                                                     'popInh',
                                                     inh_cell_id,
                                                     num_inh,
                                                     xs,
                                                     ys,
                                                     zs,
                                                     xDim,
                                                     yDim,
                                                     zDim,
                                                     color=inh_color)
    popInh.properties.append(Property('type', 'I'))
    allInh = [popInh]

    if num_inh2 > 0:
        popInh2 = oc.add_population_in_rectangular_region(network,
                                                          'popInh2',
                                                          inh2_cell_id,
                                                          num_inh2,
                                                          xs,
                                                          ys,
                                                          zs,
                                                          xDim,
                                                          yDim,
                                                          zDim,
                                                          color=inh2_color)

        allInh.append(popInh2)

    #####   Projections

    if connections:

        weight_expr = 'abs(normal(1,0.5))'

        for popEpr in allExc:

            for popEpo in allExc:
                proj = add_projection(network, "projEE", popEpr, popEpo,
                                      synAmpaEE.id, exc_exc_conn_prob,
                                      global_delay, exc_target_dendrites,
                                      weight_expr)

            for popIpo in allInh:
                proj = add_projection(network, "projEI", popEpr, popIpo,
                                      synAmpaEI.id, exc_inh_conn_prob,
                                      global_delay, exc_target_dendrites,
                                      weight_expr)

        for popIpr in allInh:

            for popEpo in allExc:
                proj = add_projection(network, "projIE", popIpr, popEpo,
                                      synGabaIE.id, inh_exc_conn_prob,
                                      global_delay, inh_target_dendrites,
                                      weight_expr)

            for popIpo in allInh:
                proj = add_projection(network, "projII", popIpr, popIpo,
                                      synGabaII.id, inh_inh_conn_prob,
                                      global_delay, inh_target_dendrites,
                                      weight_expr)

    elif connections2:

        weight_expr = 'abs(normal(1,0.5))'

        proj = add_projection(network, "projEE", popExc, popExc, synAmpaEE.id,
                              exc_exc_conn_prob, global_delay,
                              exc_target_dendrites, weight_expr)
        proj = add_projection(network, "projEI", popExc, popInh, synAmpaEI.id,
                              exc_inh_conn_prob, global_delay,
                              exc_target_dendrites, weight_expr)
        proj = add_projection(network, "projIE", popInh, popExc, synGabaIE.id,
                              inh_exc_conn_prob, global_delay,
                              inh_target_dendrites, weight_expr)
        proj = add_projection(network, "projII", popInh, popInh, synGabaII.id,
                              inh_inh_conn_prob, global_delay,
                              inh_target_dendrites, weight_expr)

        proj = add_projection(network, "projEE2", popExc, popExc2,
                              synAmpaEE2.id, ee2_conn_prob, global_delay,
                              exc_target_dendrites, weight_expr)
        proj = add_projection(network, "projIE2", popInh, popExc2,
                              synGabaIE2.id, ie2_conn_prob, global_delay,
                              inh_target_dendrites, weight_expr)

    #####   Inputs

    oc.add_inputs_to_population(network,
                                "Stim_E",
                                popExc,
                                tpfsExtExc.id,
                                all_cells=True)

    if num_exc2 > 0:
        oc.add_inputs_to_population(network,
                                    "Stim_E2",
                                    popExc2,
                                    tpfsExtExc2.id,
                                    all_cells=True)

    num_inh_pert = int(popInh.get_size() * fraction_inh_pert)

    oc.add_inputs_to_population(network,
                                "Stim_I_nonpert",
                                popInh,
                                tpfsExtInh.id,
                                all_cells=False,
                                only_cells=range(num_inh_pert,
                                                 popInh.get_size()))

    oc.add_inputs_to_population(network,
                                "Stim_I_pert_before",
                                popInh,
                                tpfsPertInh_before.id,
                                all_cells=False,
                                only_cells=range(0, num_inh_pert))
    oc.add_inputs_to_population(network,
                                "Stim_I_pert_during",
                                popInh,
                                tpfsPertInh_during.id,
                                all_cells=False,
                                only_cells=range(0, num_inh_pert))
    oc.add_inputs_to_population(network,
                                "Stim_I_pert_after",
                                popInh,
                                tpfsPertInh_after.id,
                                all_cells=False,
                                only_cells=range(0, num_inh_pert))

    # injecting noise in the soma of detailed neurons to insert some variability
    '''oc.add_targeted_inputs_to_population(network, 
                                         "PG_noise",
                                         popExc2, 
                                         'noisyCurrentSource1',             # from ../../../NoisyCurrentSource.xml
                                         segment_group='soma_group',
                                         number_per_cell = 1,
                                         all_cells=True)
    
    
    oc.add_inputs_to_population(network, "Stim_pre_ExtExc_%s"%popExc.id,
                                    popExc, tpfsExtExc.id,
                                    all_cells=True)

    for pop in allExc:
        #oc.add_inputs_to_population(network, "Stim_pre_ExtExc_%s"%pop.id,
        #                            pop, tpfsExtExc.id,
        #                            all_cells=True)

        oc.add_inputs_to_population(network, "Stim_pre_%s"%pop.id,
                                    pop, tpfsA.id,
                                    all_cells=True)
        
        oc.add_inputs_to_population(network, "Stim_E_%s"%pop.id,
                                    pop, tpfsB.id,
                                    all_cells=True) 

    for pop in allInh:
        num_inh_pert = int(pop.get_size()*fraction_inh_pert)

        oc.add_inputs_to_population(network, "Stim_pre_ExtInh_%s"%pop.id,
                                    pop, tpfsExtInh.id,
                                    all_cells=True)

        oc.add_inputs_to_population(network, "Stim_pre_%s"%pop.id,
                                    pop, tpfsA.id,
                                    all_cells=True)
        
        oc.add_inputs_to_population(network, "Stim_I_pert_%s"%pop.id,
                                    pop, tpfsC.id,
                                    all_cells=False,
                                    only_cells=range(0,num_inh_pert))   
                                    
        oc.add_inputs_to_population(network, "Stim_I_nonpert_%s"%pop.id,
                                    pop, tpfsB.id,
                                    all_cells=False,
                                    only_cells=range(num_inh_pert,pop.get_size()))  '''

    save_v = {}
    plot_v = {}

    # Work in progress...
    # General idea: clamp one (or more) exc cell at rev pot of inh syn and see only exc inputs
    #
    if v_clamp:

        levels = {'IPSC': synAmpaEE.erev, 'EPSC': synGabaIE.erev}

        for l in levels:
            cell_index = levels.keys().index(l)

            pop = 'popExc2'
            plot = 'IClamp_i_%s' % (l)

            for seg_id in [0, 2953,
                           1406]:  # 2953: end of axon; 1406 on dendrite

                clamp_id = "vclamp_cell%s_seg%s_%s" % (cell_index, seg_id, l)
                v_clamped = levels[l]

                vc = oc.add_voltage_clamp_triple(
                    nml_doc,
                    id=clamp_id,
                    delay='0ms',
                    duration='%sms' % duration,
                    conditioning_voltage=v_clamped,
                    testing_voltage=v_clamped,
                    return_voltage=v_clamped,
                    simple_series_resistance="1e2ohm",
                    active="1")

                vc_dat_file = 'v_clamps_i_seg%s_%s.%s.dat' % (seg_id, l,
                                                              simulation_seed)

                seg_file = '%s_seg%s_%s_v.dat' % (pop, seg_id, l)

                save_v[vc_dat_file] = []
                plot_v[plot] = []

                oc.add_inputs_to_population(network,
                                            "vclamp_seg%s_%s" % (seg_id, l),
                                            network.get_by_id(pop),
                                            vc.id,
                                            all_cells=False,
                                            only_cells=[cell_index],
                                            segment_ids=[seg_id])

                # record at seg
                q = '%s/%s/%s/%s/%s/i' % (pop, cell_index,
                                          network.get_by_id(pop).component,
                                          seg_id, clamp_id)

                save_v[vc_dat_file].append(q)
                plot_v[plot].append(q)

                if seg_id != 0:
                    save_v[seg_file] = []
                    q = '%s/%s/%s/%s/v' % (pop, cell_index,
                                           network.get_by_id(pop).component,
                                           seg_id)
                    save_v[seg_file].append(q)

    #####   Save NeuroML and LEMS Simulation files

    nml_file_name = '%s.net.%s' % (network.id,
                                   'nml.h5' if format == 'hdf5' else 'nml')
    oc.save_network(nml_doc,
                    nml_file_name,
                    validate=(format == 'xml'),
                    format=format,
                    target_dir=target_dir)

    print("Saved to: %s" % nml_file_name)

    if num_exc > 0:
        exc_traces = '%s_%s_v.dat' % (network.id, popExc.id)
        save_v[exc_traces] = []
        plot_v[popExc.id] = []

    if num_inh > 0:
        inh_traces = '%s_%s_v.dat' % (network.id, popInh.id)
        save_v[inh_traces] = []
        plot_v[popInh.id] = []

    if num_exc2 > 0:
        exc2_traces = '%s_%s_v.dat' % (network.id, popExc2.id)
        save_v[exc2_traces] = []
        plot_v[popExc2.id] = []

    if num_inh2 > 0:
        inh2_traces = '%s_%s_v.dat' % (network.id, popInh2.id)
        save_v[inh2_traces] = []
        plot_v[popInh2.id] = []

    for i in range(min(max_in_pop_to_plot_and_save, num_exc)):
        plot_v[popExc.id].append("%s/%i/%s/v" %
                                 (popExc.id, i, popExc.component))
        save_v[exc_traces].append("%s/%i/%s/v" %
                                  (popExc.id, i, popExc.component))

    for i in range(min(max_in_pop_to_plot_and_save, num_exc2)):
        plot_v[popExc2.id].append("%s/%i/%s/v" %
                                  (popExc2.id, i, popExc2.component))
        save_v[exc2_traces].append("%s/%i/%s/v" %
                                   (popExc2.id, i, popExc2.component))

    for i in range(min(max_in_pop_to_plot_and_save, num_inh)):
        plot_v[popInh.id].append("%s/%i/%s/v" %
                                 (popInh.id, i, popInh.component))
        save_v[inh_traces].append("%s/%i/%s/v" %
                                  (popInh.id, i, popInh.component))

    for i in range(min(max_in_pop_to_plot_and_save, num_inh2)):
        plot_v[popInh2.id].append("%s/%i/%s/v" %
                                  (popInh2.id, i, popInh2.component))
        save_v[inh2_traces].append("%s/%i/%s/v" %
                                   (popInh2.id, i, popInh2.component))

    gen_spike_saves_for_all_somas = True

    lems_file_name, lems_sim = oc.generate_lems_simulation(
        nml_doc,
        network,
        target_dir + nml_file_name,
        duration=duration,
        dt=dt,
        gen_plots_for_all_v=False,
        gen_plots_for_quantities=plot_v,
        gen_saves_for_all_v=False,
        gen_saves_for_quantities=save_v,
        gen_spike_saves_for_all_somas=gen_spike_saves_for_all_somas,
        target_dir=target_dir,
        include_extra_lems_files=['./NoisyCurrentSource.xml'],
        report_file_name='report.txt',
        simulation_seed=simulation_seed)

    if run_in_simulator:

        print("Running %s for %sms in %s" %
              (lems_file_name, duration, run_in_simulator))

        traces, events = oc.simulate_network(lems_file_name,
                                             run_in_simulator,
                                             max_memory='4000M',
                                             nogui=True,
                                             load_saved_data=True,
                                             reload_events=True,
                                             plot=False,
                                             verbose=True,
                                             num_processors=num_processors)

        print("Reloaded traces: %s" % traces.keys())
        #print("Reloaded events: %s"%events.keys())

        use_events_for_rates = False

        exc_rate = 0
        inh_rate = 0

        if use_events_for_rates:
            if (run_in_simulator == 'jNeuroML_NetPyNE'):
                raise (
                    'Saving of spikes (and so calculation of rates) not yet supported in jNeuroML_NetPyNE'
                )
            for ek in events.keys():
                rate = 1000 * len(events[ek]) / float(duration)
                print("Cell %s has a rate %s Hz" % (ek, rate))
                if 'popExc' in ek:
                    exc_rate += rate / num_exc
                if 'popInh' in ek:
                    inh_rate += rate / num_inh

        else:
            tot_exc_rate = 0
            exc_cells = 0
            tot_inh_rate = 0
            inh_cells = 0
            tt = [t * 1000 for t in traces['t']]
            for tk in traces.keys():
                if tk != 't':
                    rate = get_rate_from_trace(tt,
                                               [v * 1000 for v in traces[tk]])
                    print("Cell %s has rate %s Hz" % (tk, rate))
                    if 'popExc' in tk:
                        tot_exc_rate += rate
                        exc_cells += 1
                    if 'popInh' in tk:
                        tot_inh_rate += rate
                        inh_cells += 1

            exc_rate = tot_exc_rate / exc_cells
            inh_rate = tot_inh_rate / inh_cells

        print("Run %s: Exc rate: %s Hz; Inh rate %s Hz" %
              (reference, exc_rate, inh_rate))

        return exc_rate, inh_rate, traces

    return nml_doc, nml_file_name, lems_file_name
Example #8
0
def generate(cell_id,
             duration,
             reference,
             format='hdf5',
             num_cells=10,
             simulator=None):

    #Insyn = int(Ensyn * 0.2)
    #bInsyn = int(bEnsyn * 0.2)

    cell_file = '../%s.cell.nml' % cell_id
    if '/' in cell_id:
        cell_id = cell_id.split('/')[-1]

    nml_doc, network = oc.generate_network(reference, temperature='35degC')

    oc.include_neuroml2_cell_and_channels(nml_doc, cell_file, cell_id)

    pop = oc.add_population_in_rectangular_region(network, 'L23_pop', cell_id,
                                                  num_cells, 0, 0, 0, 100, 100,
                                                  100)

    to_plot = {'Some_voltages': []}
    to_save = {'%s_%s_voltages.dat' % (reference, cell_id): []}

    interesting_seg_ids = [0, 200, 1000, 2000, 2500,
                           2949]  # [soma, .. some dends .. , axon]
    interesting_seg_ids = [0]  # [soma, .. some dends .. , axon]

    pg0 = oc.add_pulse_generator(nml_doc,
                                 id="pg0",
                                 delay="200ms",
                                 duration="600ms",
                                 amplitude="0.4nA")

    pg1 = oc.add_pulse_generator(nml_doc,
                                 id="pg1",
                                 delay="100ms",
                                 duration="400ms",
                                 amplitude="0.02nA")

    oc.add_targeted_inputs_to_population(network,
                                         "PG_fixed",
                                         pop,
                                         pg0.id,
                                         segment_group='soma_group',
                                         number_per_cell=1,
                                         all_cells=True)

    oc.add_targeted_inputs_to_population(
        network,
        "PG_variable",
        pop,
        'cond0',  # from ../../../ConductanceClamp.xml
        segment_group='soma_group',
        number_per_cell=1,
        all_cells=True,
        weights='random()')

    for i in range(num_cells):

        for seg_id in interesting_seg_ids:
            to_plot.values()[0].append('%s/%s/%s/%s/v' %
                                       (pop.id, i, pop.component, seg_id))
            to_save.values()[0].append('%s/%s/%s/%s/v' %
                                       (pop.id, i, pop.component, seg_id))

    nml_file_name = '%s.net.nml' % network.id + ('.h5'
                                                 if format == 'hdf5' else '')

    target_dir = './'

    oc.save_network(nml_doc,
                    nml_file_name,
                    validate=False,
                    use_subfolder=True,
                    target_dir=target_dir,
                    format=format)

    lems_file_name, lems_sim = oc.generate_lems_simulation(
        nml_doc,
        network,
        nml_file_name,
        duration,
        dt=0.025,
        target_dir=target_dir,
        include_extra_lems_files=['../../../ConductanceClamp.xml'],
        gen_plots_for_all_v=False,
        plot_all_segments=False,
        gen_plots_for_quantities=
        to_plot,  #  Dict with displays vs lists of quantity paths
        gen_saves_for_all_v=False,
        save_all_segments=False,
        gen_saves_for_quantities=
        to_save,  #  Dict with file names vs lists of quantity paths
        verbose=True)

    if simulator:

        print("Running %s for %sms in %s" %
              (lems_file_name, duration, simulator))

        traces, events = oc.simulate_network(lems_file_name,
                                             simulator,
                                             max_memory='4000M',
                                             nogui=True,
                                             load_saved_data=True,
                                             reload_events=True,
                                             plot=False,
                                             verbose=True,
                                             num_processors=min(num_cells, 16))