def _calibrate_camera(self) : source = CameraInputProvider.get_frame(self) success, corners = cv.cvFindChessboardCorners(source, cv.cvSize(self.grid[0],self.grid[1])) n_points = self.grid[0]*self.grid[1] grid_x = self.capture_dims[0]/self.grid[0] grid_y = self.capture_dims[1]/self.grid[1] dest = [] for i in range(0,self.grid[0]) : for j in range(0,self.grid[1]) : dest.append((j*grid_x,i*grid_y)) self.dest = dest s = cv.cvCreateMat(n_points,2,cv.CV_32F) d = cv.cvCreateMat(n_points,2,cv.CV_32F) p = cv.cvCreateMat(3,3,cv.CV_32F) for i in range(n_points): s[i,0] = corners[i].x s[i,1] = corners[i].y d[i,0] = dest[i][0] d[i,1] = dest[i][1] results = cv.cvFindHomography(s,d,p) self.matrix = p
def find_homography(points1, points2): cv_homography = cv.cvCreateMat(3, 3, cv.CV_32FC1) cv_points1 = numpymat2cvmat(points1) cv_points2 = numpymat2cvmat(points2) cv.cvFindHomography(cv_points1, cv_points2, cv_homography) return cvmat2numpymat(cv_homography)
def find_homography(points1,points2): cv_homography = cv.cvCreateMat(3,3,cv.CV_32FC1) cv_points1 = numpymat2cvmat(points1) cv_points2 = numpymat2cvmat(points2) cv.cvFindHomography(cv_points1,cv_points2,cv_homography) return cvmat2numpymat(cv_homography)
def read(self): source = self.input.read() if not self.calibrated: success, corners = cv.cvFindChessboardCorners(source, cv.cvSize(self.grid[0],self.grid[1])) if success == 1 : cv.cvDrawChessboardCorners(source,cv.cvSize(self.grid[0],self.grid[1]),corners,len(corners)) #self.debug_print('CVPerspective: success, corners = (%d,%s(%d))'%(success,corners,len(corners))) n_points = self.grid[0]*self.grid[1] grid_x = self.dims[0]/(self.grid[0]+1) grid_y = self.dims[1]/(self.grid[1]+1) self.dest = [] for i in range(1,self.grid[0]+1) : for j in range(1,self.grid[1]+1) : self.dest.append((j*grid_x,i*grid_y)) # loop through corners (clockwise wrapped), figure out which is closest to origin four_corners = [corners[0],corners[self.grid[0]-1],corners[-1],corners[self.grid[0]*(self.grid[1]-1)]] distances = [] for i,corner in enumerate(four_corners) : distances.append((sqrt(corner.x**2+corner.y**2),i)) min_corner = min(distances) #self.debug_print(distances) #self.debug_print(min_corner) if min_corner[1] != 0 : rotator = array([corners]) rotator = rotator.reshape((self.grid)) rotator = rot90(rotator,min_corner[1]) corners = rotator.flatten().tolist() s = cv.cvCreateMat(n_points,2,cv.CV_32F) d = cv.cvCreateMat(n_points,2,cv.CV_32F) p = cv.cvCreateMat(3,3,cv.CV_32F) for i in range(n_points): s[i,0] = corners[i].x s[i,1] = corners[i].y d[i,0] = self.dest[i][0] d[i,1] = self.dest[i][1] results = cv.cvFindHomography(s,d,p) self.matrix = p self.settings.perspective.calibrated = True #self.debug_print('projection matrix:%s'%p) if self.calibrated : try : # workaround for now dst = cv.cvCreateImage(cv.cvSize(self.dims[0],self.dims[1]),source.depth,source.nChannels) cv.cvWarpPerspective( source, dst, self.matrix) except AttributeError : pass else: return dst return source