def detect(self, image): # image size is needed by underlying opencv lib to allocate memory image_size = opencv.cvGetSize(image) # the algorithm works with grayscale images grayscale = opencv.cvCreateImage(image_size, 8, 1) opencv.cvCvtColor(image, grayscale, opencv.CV_BGR2GRAY) # more underlying c lib memory allocation storage = opencv.cvCreateMemStorage(0) opencv.cvClearMemStorage(storage) # equalize histogram opencv.cvEqualizeHist(grayscale, grayscale) # detect faces using haar cascade, the used file is trained to # detect frontal faces cascade = opencv.cvLoadHaarClassifierCascade( 'haarcascade_frontalface_alt.xml', opencv.cvSize(1, 1)) faces = opencv.cvHaarDetectObjects(grayscale, cascade, storage, 1.2, 2, opencv.CV_HAAR_DO_CANNY_PRUNING, opencv.cvSize(100, 100)) # draw rectangles around faces for face in faces: opencv.cvRectangle( image, opencv.cvPoint(int(face.x), int(face.y)), opencv.cvPoint(int(face.x + face.width), int(face.y + face.height)), opencv.CV_RGB(127, 255, 0), 2) # return faces casted to list here, otherwise some obscure bug # in opencv will make it segfault if the casting happens later return image, list(faces)
def detect(self, image): # image size is needed by underlying opencv lib to allocate memory image_size = opencv.cvGetSize(image) # the algorithm works with grayscale images grayscale = opencv.cvCreateImage(image_size, 8, 1) opencv.cvCvtColor(image, grayscale, opencv.CV_BGR2GRAY) # more underlying c lib memory allocation storage = opencv.cvCreateMemStorage(0) opencv.cvClearMemStorage(storage) # equalize histogram opencv.cvEqualizeHist(grayscale, grayscale) # detect faces using haar cascade, the used file is trained to # detect frontal faces cascade = opencv.cvLoadHaarClassifierCascade( 'haarcascade_frontalface_alt.xml', opencv.cvSize(1, 1)) faces = opencv.cvHaarDetectObjects( grayscale, cascade, storage, 1.2, 2, opencv.CV_HAAR_DO_CANNY_PRUNING, opencv.cvSize(100, 100)) # draw rectangles around faces for face in faces: opencv.cvRectangle( image, opencv.cvPoint( int(face.x), int(face.y)), opencv.cvPoint(int(face.x + face.width), int(face.y + face.height)), opencv.CV_RGB(127, 255, 0), 2) # return faces casted to list here, otherwise some obscure bug # in opencv will make it segfault if the casting happens later return image, list(faces)
def findcontours(iplimage, threshold=100): srcimage = opencv.cvCloneImage(iplimage) # create the storage area and bw image grayscale = opencv.cvCreateImage(opencv.cvGetSize(srcimage), 8, 1) opencv.cvCvtColor(srcimage, grayscale, opencv.CV_BGR2GRAY) #threshold opencv.cvThreshold(grayscale, grayscale, threshold, 255, opencv.CV_THRESH_BINARY) storage = opencv.cvCreateMemStorage(0) opencv.cvClearMemStorage(storage) # find the contours nb_contours, contours = opencv.cvFindContours (grayscale, storage) # comment this out if you do not want approximation contours = opencv.cvApproxPoly (contours, opencv.sizeof_CvContour, storage, opencv.CV_POLY_APPROX_DP, 3, 1) # next line is for ctypes-opencv #contours = opencv.cvApproxPoly (contours, opencv.sizeof(opencv.CvContour), storage, opencv.CV_POLY_APPROX_DP, 3, 1) conts = [] for cont in contours.hrange(): points=[] for pt in cont: points.append((pt.x,pt.y)) conts.append(points) opencv.cvReleaseMemStorage(storage) opencv.cvReleaseImage(srcimage) opencv.cvReleaseImage(grayscale) return (nb_contours, conts)
def findcontours(iplimage, threshold=100): srcimage = opencv.cvCloneImage(iplimage) # create the storage area and bw image grayscale = opencv.cvCreateImage(opencv.cvGetSize(srcimage), 8, 1) opencv.cvCvtColor(srcimage, grayscale, opencv.CV_BGR2GRAY) # threshold opencv.cvThreshold(grayscale, grayscale, threshold, 255, opencv.CV_THRESH_BINARY) storage = opencv.cvCreateMemStorage(0) opencv.cvClearMemStorage(storage) # find the contours nb_contours, contours = opencv.cvFindContours(grayscale, storage) # comment this out if you do not want approximation contours = opencv.cvApproxPoly(contours, opencv.sizeof_CvContour, storage, opencv.CV_POLY_APPROX_DP, 3, 1) # next line is for ctypes-opencv # contours = opencv.cvApproxPoly (contours, opencv.sizeof(opencv.CvContour), storage, opencv.CV_POLY_APPROX_DP, 3, 1) conts = [] for cont in contours.hrange(): points = [] for pt in cont: points.append((pt.x, pt.y)) conts.append(points) opencv.cvReleaseMemStorage(storage) opencv.cvReleaseImage(srcimage) opencv.cvReleaseImage(grayscale) return (nb_contours, conts)
def get_frame(self, face_rec = False): image = highgui.cvQueryFrame(self.device) face_matches = False if face_rec: grayscale = cv.cvCreateImage(cv.cvSize(640, 480), 8, 1) cv.cvCvtColor(image, grayscale, cv.CV_BGR2GRAY) storage = cv.cvCreateMemStorage(0) cv.cvClearMemStorage(storage) cv.cvEqualizeHist(grayscale, grayscale) for cascade in self.haarfiles: matches = cv.cvHaarDetectObjects(grayscale, cascade, storage, 1.2, 2, cv.CV_HAAR_DO_CANNY_PRUNING, cv.cvSize(100,100)) if matches: face_matches = True for i in matches: cv.cvRectangle(image, cv.cvPoint( int(i.x), int(i.y)), cv.cvPoint(int(i.x+i.width), int(i.y+i.height)), cv.CV_RGB(0,0,255), 2, 5, 0) image = cv.cvGetMat(image) return (image, face_matches)
def detect(image): # Find out how large the file is, as the underlying C-based code # needs to allocate memory in the following steps image_size = opencv.cvGetSize(image) # create grayscale version - this is also the point where the allegation about # facial recognition being racist might be most true. A caucasian face would have more # definition on a webcam image than an African face when greyscaled. # I would suggest that adding in a routine to overlay edge-detection enhancements may # help, but you would also need to do this to the training images as well. grayscale = opencv.cvCreateImage(image_size, 8, 1) opencv.cvCvtColor(image, grayscale, opencv.CV_BGR2GRAY) # create storage (It is C-based so you need to do this sort of thing) storage = opencv.cvCreateMemStorage(0) opencv.cvClearMemStorage(storage) # equalize histogram opencv.cvEqualizeHist(grayscale, grayscale) # detect objects - Haar cascade step # In this case, the code uses a frontal_face cascade - trained to spot faces that look directly # at the camera. In reality, I found that no bearded or hairy person must have been in the training # set of images, as the detection routine turned out to be beardist as well as a little racist! cascade = opencv.cvLoadHaarClassifierCascade('haarcascade_frontalface_alt.xml', opencv.cvSize(1,1)) faces = opencv.cvHaarDetectObjects(grayscale, cascade, storage, 1.2, 2, opencv.CV_HAAR_DO_CANNY_PRUNING, opencv.cvSize(50, 50)) if faces: for face in faces: # Hmm should I do a min-size check? # Draw a Chartreuse rectangle around the face - Chartruese rocks opencv.cvRectangle(image, opencv.cvPoint( int(face.x), int(face.y)), opencv.cvPoint(int(face.x + face.width), int(face.y + face.height)), opencv.CV_RGB(127, 255, 0), 2) # RGB #7FFF00 width=2
def findFaces(self, img): faces = [] self.detect_time = time.time() rects = self.face_detector.detect(img) self.detect_time = time.time() - self.detect_time cvtile = opencv.cvCreateMat(128, 128, opencv.CV_8UC3) bwtile = opencv.cvCreateMat(128, 128, opencv.CV_8U) cvimg = img.asOpenCV() self.eye_time = time.time() for rect in rects: faceim = opencv.cvGetSubRect(cvimg, rect.asOpenCV()) opencv.cvResize(faceim, cvtile) affine = pv.AffineFromRect(rect, (128, 128)) opencv.cvCvtColor(cvtile, bwtile, cv.CV_BGR2GRAY) leye, reye, lcp, rcp = self.fel.locateEyes(bwtile) leye = pv.Point(leye) reye = pv.Point(reye) leye = affine.invertPoint(leye) reye = affine.invertPoint(reye) faces.append([rect, leye, reye]) self.eye_time = time.time() - self.eye_time self.current_faces = faces return faces
def eigen_texture(cv_image, blocksize=8, filtersize=3): gray_image = cv.cvCreateImage(cv.cvSize(cv_image.width, cv_image.height), cv.IPL_DEPTH_8U, 1) eig_tex = cv.cvCreateImage(cv.cvSize(cv_image.width*6, cv_image.height), cv.IPL_DEPTH_32F, 1) cv.cvCvtColor(cv_image, gray_image, cv.CV_BGR2GRAY) cv.cvCornerEigenValsAndVecs(gray_image, eig_tex, blocksize, filtersize) eig_tex_np = ut.cv2np(eig_tex) eig_tex_np = np.reshape(eig_tex_np, [cv_image.height, cv_image.width, 6]) return eig_tex_np[:,:,0:2]
def eigen_texture(cv_image, blocksize=8, filtersize=3): gray_image = cv.cvCreateImage(cv.cvSize(cv_image.width, cv_image.height), cv.IPL_DEPTH_8U, 1) eig_tex = cv.cvCreateImage(cv.cvSize(cv_image.width * 6, cv_image.height), cv.IPL_DEPTH_32F, 1) cv.cvCvtColor(cv_image, gray_image, cv.CV_BGR2GRAY) cv.cvCornerEigenValsAndVecs(gray_image, eig_tex, blocksize, filtersize) eig_tex_np = ut.cv2np(eig_tex) eig_tex_np = np.reshape(eig_tex_np, [cv_image.height, cv_image.width, 6]) return eig_tex_np[:, :, 0:2]
def ipl2cairo(iplimage): srcimage = opencv.cvCloneImage(iplimage) width = srcimage.width height = srcimage.height image = opencv.cvCreateImage(opencv.cvGetSize(srcimage),8, 4) opencv.cvCvtColor(srcimage,image,opencv.CV_BGR2BGRA) buffer = numpy.fromstring(image.imageData, dtype=numpy.uint32).astype(numpy.uint32) buffer.shape = (image.width, image.height) opencv.cvReleaseImage(srcimage) opencv.cvReleaseImage(image) return cairo.ImageSurface.create_for_data(buffer, cairo.FORMAT_RGB24, width, height, width*4)
def ipl2cairo(iplimage): srcimage = opencv.cvCloneImage(iplimage) width = srcimage.width height = srcimage.height image = opencv.cvCreateImage(opencv.cvGetSize(srcimage), 8, 4) opencv.cvCvtColor(srcimage, image, opencv.CV_BGR2BGRA) buffer = numpy.fromstring(image.imageData, dtype=numpy.uint32).astype(numpy.uint32) buffer.shape = (image.width, image.height) opencv.cvReleaseImage(srcimage) opencv.cvReleaseImage(image) return cairo.ImageSurface.create_for_data(buffer, cairo.FORMAT_RGB24, width, height, width * 4)
def run(): filename = 'C:\\Documents and Settings\\rmccormack\\Desktop\\work_projects\\openCV\\test\\test1.jpg' im = hg.cvLoadImage(filename) if not im: print "Error opening %s" % filename sys.exit(-1) im2 = opencv.cvCreateImage(opencv.cvGetSize(im), 8, 4) opencv.cvCvtColor(im, im2, opencv.CV_BGR2BGRA) buffer = numpy.fromstring(im2.imageData, dtype=numpy.uint32).astype(numpy.float32) buffer.shape = (im2.width, im2.height) return buffer
def __init__(self, src="", time=None): self.src = src self.time = time if self.time: hg.cvSetCaptureProperty(self.src, hg.CV_CAP_PROP_POS_FRAMES, self.time) self.iplimage = hg.cvQueryFrame(self.src) self.width = self.iplimage.width self.height = self.iplimage.height self.image = opencv.cvCreateImage(opencv.cvGetSize(self.iplimage),8, 4) opencv.cvCvtColor(self.iplimage,self.image,opencv.CV_BGR2BGRA) self.buffer = numpy.fromstring(self.image.imageData, dtype=numpy.uint32).astype(numpy.uint32) self.buffer.shape = (self.image.width, self.image.height) self.time = hg.cvGetCaptureProperty(self.src, hg.CV_CAP_PROP_POS_MSEC)
def __init__(self, src="", time=None): self.src = src self.time = time if self.time: hg.cvSetCaptureProperty(self.src, hg.CV_CAP_PROP_POS_FRAMES, self.time) self.iplimage = hg.cvQueryFrame(self.src) self.width = self.iplimage.width self.height = self.iplimage.height self.image = opencv.cvCreateImage(opencv.cvGetSize(self.iplimage), 8, 4) opencv.cvCvtColor(self.iplimage, self.image, opencv.CV_BGR2BGRA) self.buffer = numpy.fromstring(self.image.imageData, dtype=numpy.uint32).astype(numpy.uint32) self.buffer.shape = (self.image.width, self.image.height) self.time = hg.cvGetCaptureProperty(self.src, hg.CV_CAP_PROP_POS_MSEC)
def detectObject(self, classifier): self.grayscale = opencv.cvCreateImage(opencv.cvGetSize(self.iplimage), 8, 1) opencv.cvCvtColor(self.iplimage, self.grayscale, opencv.CV_BGR2GRAY) self.storage = opencv.cvCreateMemStorage(0) opencv.cvClearMemStorage(self.storage) opencv.cvEqualizeHist(self.grayscale, self.grayscale) try: self.cascade = opencv.cvLoadHaarClassifierCascade(os.path.join(os.path.dirname(__file__), classifier+".xml"),opencv.cvSize(1,1)) except: raise AttributeError, "could not load classifier file" self.objects = opencv.cvHaarDetectObjects(self.grayscale, self.cascade, self.storage, 1.2, 2, opencv.CV_HAAR_DO_CANNY_PRUNING, opencv.cvSize(50,50)) return self.objects
def detectObject(self, classifier): self.grayscale = opencv.cvCreateImage(opencv.cvGetSize(self.iplimage), 8, 1) opencv.cvCvtColor(self.iplimage, self.grayscale, opencv.CV_BGR2GRAY) self.storage = opencv.cvCreateMemStorage(0) opencv.cvClearMemStorage(self.storage) opencv.cvEqualizeHist(self.grayscale, self.grayscale) try: self.cascade = opencv.cvLoadHaarClassifierCascade(os.path.join(os.path.dirname(__file__), classifier+".xml"),opencv.cvSize(1, 1)) except: raise AttributeError("could not load classifier file") self.objects = opencv.cvHaarDetectObjects(self.grayscale, self.cascade, self.storage, 1.2, 2, opencv.CV_HAAR_DO_CANNY_PRUNING, opencv.cvSize(50, 50)) return self.objects
def Ipl2NumPy(input): """Converts an OpenCV/IPL image to a numpy array. Supported input image formats are IPL_DEPTH_8U x 1 channel IPL_DEPTH_8U x 3 channels IPL_DEPTH_32F x 1 channel IPL_DEPTH_32F x 2 channels IPL_DEPTH_32S x 1 channel IPL_DEPTH_64F x 1 channel IPL_DEPTH_64F x 2 channels """ if not isinstance(input, cv.CvMat): raise TypeError, 'must be called with a cv.CvMat!' # data type dictionary: # (channels, depth) : numpy dtype ipl2dtype = { (1, cv.IPL_DEPTH_8U): numpy.uint8, (3, cv.IPL_DEPTH_8U): numpy.uint8, (1, cv.IPL_DEPTH_32F): numpy.float32, (2, cv.IPL_DEPTH_32F): numpy.float32, (1, cv.IPL_DEPTH_32S): numpy.int32, (1, cv.IPL_DEPTH_64F): numpy.float64, (2, cv.IPL_DEPTH_64F): numpy.float64 } key = (input.nChannels, input.depth) if not ipl2dtype.has_key(key): raise ValueError, 'unknown or unsupported input mode' # Get the numpy array and reshape it correctly # ATTENTION: flipped dimensions width/height on 2007-11-15 if input.nChannels == 1: array_1d = numpy.fromstring(input.imageData, dtype=ipl2dtype[key]) return numpy.reshape(array_1d, (input.height, input.width)) elif input.nChannels == 2: array_1d = numpy.fromstring(input.imageData, dtype=ipl2dtype[key]) return numpy.reshape(array_1d, (input.height, input.width, 2)) elif input.nChannels == 3: # Change the order of channels from BGR to RGB rgb = cv.cvCreateImage(cv.cvSize(input.width, input.height), input.depth, 3) cv.cvCvtColor(input, rgb, cv.CV_BGR2RGB) array_1d = numpy.fromstring(rgb.imageData, dtype=ipl2dtype[key]) return numpy.reshape(array_1d, (input.height, input.width, 3))
def __init__(self, frame): self.blob_image = opencv.cvCloneImage(frame.iplimage) self.blob_gray = opencv.cvCreateImage(opencv.cvGetSize(self.blob_image), 8, 1) self.blob_mask = opencv.cvCreateImage(opencv.cvGetSize(self.blob_image), 8, 1) opencv.cvSet(self.blob_mask, 1) opencv.cvCvtColor(self.blob_image, self.blob_gray, opencv.CV_BGR2GRAY) # opencv.cvEqualizeHist(self.blob_gray, self.blob_gray) # opencv.cvThreshold(self.blob_gray, self.blob_gray, frame.thresh, 255, opencv.CV_THRESH_BINARY) # opencv.cvThreshold(self.blob_gray, self.blob_gray, frame.thresh, 255, opencv.CV_THRESH_TOZERO) opencv.cvThreshold(self.blob_gray, self.blob_gray, frame.bthresh, 255, frame.bthreshmode) # opencv.cvAdaptiveThreshold(self.blob_gray, self.blob_gray, 255, opencv.CV_ADAPTIVE_THRESH_MEAN_C, opencv.CV_THRESH_BINARY_INV) self._frame_blobs = CBlobResult(self.blob_gray, self.blob_mask, 100, True) self._frame_blobs.filter_blobs(10, 10000) self.count = self._frame_blobs.GetNumBlobs() self.items = [] for i in range(self.count): self.items.append(self._frame_blobs.GetBlob(i))
def __init__(self, frame): self.blob_image = opencv.cvCloneImage(frame.iplimage) self.blob_gray = opencv.cvCreateImage(opencv.cvGetSize(self.blob_image), 8, 1) self.blob_mask = opencv.cvCreateImage(opencv.cvGetSize(self.blob_image), 8, 1) opencv.cvSet(self.blob_mask, 1) opencv.cvCvtColor(self.blob_image, self.blob_gray, opencv.CV_BGR2GRAY) #opencv.cvEqualizeHist(self.blob_gray, self.blob_gray) #opencv.cvThreshold(self.blob_gray, self.blob_gray, frame.thresh, 255, opencv.CV_THRESH_BINARY) #opencv.cvThreshold(self.blob_gray, self.blob_gray, frame.thresh, 255, opencv.CV_THRESH_TOZERO) opencv.cvThreshold(self.blob_gray, self.blob_gray, frame.bthresh, 255, frame.bthreshmode) #opencv.cvAdaptiveThreshold(self.blob_gray, self.blob_gray, 255, opencv.CV_ADAPTIVE_THRESH_MEAN_C, opencv.CV_THRESH_BINARY_INV) self._frame_blobs = CBlobResult(self.blob_gray, self.blob_mask, 100, True) self._frame_blobs.filter_blobs(10, 10000) self.count = self._frame_blobs.GetNumBlobs() self.items = [] for i in range(self.count): self.items.append(self._frame_blobs.GetBlob(i))
def Ipl2NumPy(input): """Converts an OpenCV/IPL image to a numpy array. Supported input image formats are IPL_DEPTH_8U x 1 channel IPL_DEPTH_8U x 3 channels IPL_DEPTH_32F x 1 channel IPL_DEPTH_32F x 2 channels IPL_DEPTH_32S x 1 channel IPL_DEPTH_64F x 1 channel IPL_DEPTH_64F x 2 channels """ if not isinstance(input, cv.CvMat): raise TypeError, 'must be called with a cv.CvMat!' # data type dictionary: # (channels, depth) : numpy dtype ipl2dtype = { (1, cv.IPL_DEPTH_8U) : numpy.uint8, (3, cv.IPL_DEPTH_8U) : numpy.uint8, (1, cv.IPL_DEPTH_32F) : numpy.float32, (2, cv.IPL_DEPTH_32F) : numpy.float32, (1, cv.IPL_DEPTH_32S) : numpy.int32, (1, cv.IPL_DEPTH_64F) : numpy.float64, (2, cv.IPL_DEPTH_64F) : numpy.float64 } key = (input.nChannels, input.depth) if not ipl2dtype.has_key(key): raise ValueError, 'unknown or unsupported input mode' # Get the numpy array and reshape it correctly # ATTENTION: flipped dimensions width/height on 2007-11-15 if input.nChannels == 1: array_1d = numpy.fromstring(input.imageData, dtype=ipl2dtype[key]) return numpy.reshape(array_1d, (input.height, input.width)) elif input.nChannels == 2: array_1d = numpy.fromstring(input.imageData, dtype=ipl2dtype[key]) return numpy.reshape(array_1d, (input.height, input.width, 2)) elif input.nChannels == 3: # Change the order of channels from BGR to RGB rgb = cv.cvCreateImage(cv.cvSize(input.width, input.height), input.depth, 3) cv.cvCvtColor(input, rgb, cv.CV_BGR2RGB) array_1d = numpy.fromstring(rgb.imageData, dtype=ipl2dtype[key]) return numpy.reshape(array_1d, (input.height, input.width, 3))
def detectHaar(iplimage, classifier): srcimage = opencv.cvCloneImage(iplimage) grayscale = opencv.cvCreateImage(opencv.cvGetSize(srcimage), 8, 1) opencv.cvCvtColor(srcimage, grayscale, opencv.CV_BGR2GRAY) storage = opencv.cvCreateMemStorage(0) opencv.cvClearMemStorage(storage) opencv.cvEqualizeHist(grayscale, grayscale) try: cascade = opencv.cvLoadHaarClassifierCascade(os.path.join(os.path.dirname(__file__), classifier + ".xml"), opencv.cvSize(1, 1)) except: raise AttributeError("could not load classifier file") objs = opencv.cvHaarDetectObjects(grayscale, cascade, storage, 1.2, 2, opencv.CV_HAAR_DO_CANNY_PRUNING, opencv.cvSize(50, 50)) objects = [] for obj in objs: objects.append(Haarobj(obj)) opencv.cvReleaseImage(srcimage) opencv.cvReleaseImage(grayscale) opencv.cvReleaseMemStorage(storage) return objects
def detectHaar(iplimage, classifier): srcimage = opencv.cvCloneImage(iplimage) grayscale = opencv.cvCreateImage(opencv.cvGetSize(srcimage), 8, 1) opencv.cvCvtColor(srcimage, grayscale, opencv.CV_BGR2GRAY) storage = opencv.cvCreateMemStorage(0) opencv.cvClearMemStorage(storage) opencv.cvEqualizeHist(grayscale, grayscale) try: cascade = opencv.cvLoadHaarClassifierCascade(os.path.join(os.path.dirname(__file__), classifier+".xml"),opencv.cvSize(1,1)) except: raise AttributeError, "could not load classifier file" objs = opencv.cvHaarDetectObjects(grayscale, cascade, storage, 1.2, 2, opencv.CV_HAAR_DO_CANNY_PRUNING, opencv.cvSize(50,50)) objects = [] for obj in objs: objects.append(Haarobj(obj)) opencv.cvReleaseImage(srcimage) opencv.cvReleaseImage(grayscale) opencv.cvReleaseMemStorage(storage) return objects
def detect(self, pil_image, cascade_name, recogn_w = 50, recogn_h = 50): # Get cascade: cascade = self.get_cascade(cascade_name) image = opencv.PIL2Ipl(pil_image) image_size = opencv.cvGetSize(image) grayscale = image if pil_image.mode == "RGB": # create grayscale version grayscale = opencv.cvCreateImage(image_size, 8, 1) # Change to RGB2Gray - I dont think itll affect the conversion opencv.cvCvtColor(image, grayscale, opencv.CV_BGR2GRAY) # create storage storage = opencv.cvCreateMemStorage(0) opencv.cvClearMemStorage(storage) # equalize histogram opencv.cvEqualizeHist(grayscale, grayscale) # detect objects return opencv.cvHaarDetectObjects(grayscale, cascade, storage, 1.2, 2, opencv.CV_HAAR_DO_CANNY_PRUNING, opencv.cvSize(recogn_w, recogn_h))
def detect(self, pil_image, cascade_name, recogn_w=50, recogn_h=50): # Get cascade: cascade = self.get_cascade(cascade_name) image = opencv.PIL2Ipl(pil_image) image_size = opencv.cvGetSize(image) grayscale = image if pil_image.mode == "RGB": # create grayscale version grayscale = opencv.cvCreateImage(image_size, 8, 1) # Change to RGB2Gray - I dont think itll affect the conversion opencv.cvCvtColor(image, grayscale, opencv.CV_BGR2GRAY) # create storage storage = opencv.cvCreateMemStorage(0) opencv.cvClearMemStorage(storage) # equalize histogram opencv.cvEqualizeHist(grayscale, grayscale) # detect objects return opencv.cvHaarDetectObjects(grayscale, cascade, storage, 1.2, 2, opencv.CV_HAAR_DO_CANNY_PRUNING, opencv.cvSize(recogn_w, recogn_h))
def prepare(self, features_k_nearest_neighbors, nonzero_indices = None, all_save_load = False, regenerate_neightborhood_indices = False): #print np.shape(self.processor.pts3d_bound), 'shape pts3d_bound' imgTmp = cv.cvCloneImage(self.processor.img) self.imNP = ut.cv2np(imgTmp,format='BGR') ###self.processor.map2d = np.asarray(self.processor.camPts_bound) #copied from laser to image mapping if features_k_nearest_neighbors == None or features_k_nearest_neighbors == False: #use range self.kdtree2d = kdtree.KDTree(self.processor.pts3d_bound.T) #print len(nonzero_indices) #print np.shape(np.asarray((self.processor.pts3d_bound.T)[nonzero_indices])) if nonzero_indices != None: print ut.getTime(), 'query ball tree for ', len(nonzero_indices), 'points' kdtree_query = kdtree.KDTree((self.processor.pts3d_bound.T)[nonzero_indices]) else: print ut.getTime(), 'query ball tree' kdtree_query = kdtree.KDTree(self.processor.pts3d_bound.T) filename = self.processor.config.path+'/data/'+self.processor.scan_dataset.id+'_sphere_neighborhood_indices_'+str(self.processor.feature_radius)+'.pkl' if all_save_load == True and os.path.exists(filename) and regenerate_neightborhood_indices == False: #if its already there, load it: print ut.getTime(), 'loading',filename self.kdtree_queried_indices = ut.load_pickle(filename) else: self.kdtree_queried_indices = kdtree_query.query_ball_tree(self.kdtree2d, self.processor.feature_radius, 2.0, 0.2) #approximate print ut.getTime(), 'queried kdtree: ',len(self.kdtree_queried_indices),'points, radius:',self.processor.feature_radius if all_save_load == True: ut.save_pickle(self.kdtree_queried_indices, filename) #make dict out of list for faster operations? (doesn't seem to change speed significantly): #self.kdtree_queried_indices = dict(zip(xrange(len(self.kdtree_queried_indices)), self.kdtree_queried_indices)) else: #experiemental: use_20_nearest_neighbors == True #TODO: exclude invalid values in get_featurevector (uncomment code there) self.kdtree2d = kdtree.KDTree(self.processor.pts3d_bound.T) self.kdtree_queried_indices = [] print ut.getTime(), 'kdtree single queries for kNN start, k=', features_k_nearest_neighbors count = 0 for point in ((self.processor.pts3d_bound.T)[nonzero_indices]): count = count + 1 result = self.kdtree2d.query(point, features_k_nearest_neighbors,0.2,2,self.processor.feature_radius) #existing = result[0][0] != np.Inf #print existing #print result[1] self.kdtree_queried_indices += [result[1]] #[existing] if count % 4096 == 0: print ut.getTime(),count print ut.getTime(), 'kdtree singe queries end' #convert to numpy array -> faster access self.kdtree_queried_indices = np.asarray(self.kdtree_queried_indices) #print self.kdtree_queried_indices #takes long to compute: #avg_len = 0 #minlen = 999999 #maxlen = 0 #for x in self.kdtree_queried_indices: # avg_len += len(x) # minlen = min(minlen, len(x)) # maxlen = max(maxlen, len(x)) #avg_len = avg_len / len(self.kdtree_queried_indices) #print ut.getTime(), "range neighbors: avg_len", avg_len, 'minlen', minlen, 'maxlen', maxlen #create HSV numpy images: # compute the hsv version of the image image_size = cv.cvGetSize(self.processor.img) img_h = cv.cvCreateImage (image_size, 8, 1) img_s = cv.cvCreateImage (image_size, 8, 1) img_v = cv.cvCreateImage (image_size, 8, 1) img_hsv = cv.cvCreateImage (image_size, 8, 3) cv.cvCvtColor (self.processor.img, img_hsv, cv.CV_BGR2HSV) cv.cvSplit (img_hsv, img_h, img_s, img_v, None) self.imNP_h = ut.cv2np(img_h) self.imNP_s = ut.cv2np(img_s) self.imNP_v = ut.cv2np(img_v) textures = texture_features.eigen_texture(self.processor.img) self.imNP_tex1 = textures[:,:,0] self.imNP_tex2 = textures[:,:,1] self.debug_before_first_featurevector = True self.generate_voi_histogram(self.processor.point_of_interest,self.processor.voi_width)
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # ## @author Hai Nguyen/[email protected] ##@package image_broadcaster # Broadcast image given on command line to topic 'image'. import rostools rostools.updatePath('gmmseg') import rospy import std_msgs.msg.Image as RImage import opencv.highgui as hg import opencv as cv import sys import time rospy.ready(sys.argv[0]) pub_channel = rospy.TopicPub('image', RImage) cv_image = hg.cvLoadImage(sys.argv[1]) cv.cvCvtColor(cv_image, cv_image, cv.CV_BGR2RGB ) count = 1 while not rospy.isShutdown(): image = RImage(None, 'static', cv_image.width, cv_image.height, '', 'rgb24', cv_image.imageData) pub_channel.publish(image) print 'published', count count = count + 1 time.sleep(.3)
def prepare(self, features_k_nearest_neighbors, nonzero_indices=None, all_save_load=False, regenerate_neightborhood_indices=False): #print np.shape(self.processor.pts3d_bound), 'shape pts3d_bound' imgTmp = cv.cvCloneImage(self.processor.img) self.imNP = ut.cv2np(imgTmp, format='BGR') ###self.processor.map2d = np.asarray(self.processor.camPts_bound) #copied from laser to image mapping if features_k_nearest_neighbors == None or features_k_nearest_neighbors == False: #use range self.kdtree2d = kdtree.KDTree(self.processor.pts3d_bound.T) #print len(nonzero_indices) #print np.shape(np.asarray((self.processor.pts3d_bound.T)[nonzero_indices])) if nonzero_indices != None: print ut.getTime(), 'query ball tree for ', len( nonzero_indices), 'points' kdtree_query = kdtree.KDTree( (self.processor.pts3d_bound.T)[nonzero_indices]) else: print ut.getTime(), 'query ball tree' kdtree_query = kdtree.KDTree(self.processor.pts3d_bound.T) filename = self.processor.config.path + '/data/' + self.processor.scan_dataset.id + '_sphere_neighborhood_indices_' + str( self.processor.feature_radius) + '.pkl' if all_save_load == True and os.path.exists( filename) and regenerate_neightborhood_indices == False: #if its already there, load it: print ut.getTime(), 'loading', filename self.kdtree_queried_indices = ut.load_pickle(filename) else: self.kdtree_queried_indices = kdtree_query.query_ball_tree( self.kdtree2d, self.processor.feature_radius, 2.0, 0.2) #approximate print ut.getTime(), 'queried kdtree: ', len( self.kdtree_queried_indices ), 'points, radius:', self.processor.feature_radius if all_save_load == True: ut.save_pickle(self.kdtree_queried_indices, filename) #make dict out of list for faster operations? (doesn't seem to change speed significantly): #self.kdtree_queried_indices = dict(zip(xrange(len(self.kdtree_queried_indices)), self.kdtree_queried_indices)) else: #experiemental: use_20_nearest_neighbors == True #TODO: exclude invalid values in get_featurevector (uncomment code there) self.kdtree2d = kdtree.KDTree(self.processor.pts3d_bound.T) self.kdtree_queried_indices = [] print ut.getTime( ), 'kdtree single queries for kNN start, k=', features_k_nearest_neighbors count = 0 for point in ((self.processor.pts3d_bound.T)[nonzero_indices]): count = count + 1 result = self.kdtree2d.query(point, features_k_nearest_neighbors, 0.2, 2, self.processor.feature_radius) #existing = result[0][0] != np.Inf #print existing #print result[1] self.kdtree_queried_indices += [result[1]] #[existing] if count % 4096 == 0: print ut.getTime(), count print ut.getTime(), 'kdtree singe queries end' #convert to numpy array -> faster access self.kdtree_queried_indices = np.asarray( self.kdtree_queried_indices) #print self.kdtree_queried_indices #takes long to compute: #avg_len = 0 #minlen = 999999 #maxlen = 0 #for x in self.kdtree_queried_indices: # avg_len += len(x) # minlen = min(minlen, len(x)) # maxlen = max(maxlen, len(x)) #avg_len = avg_len / len(self.kdtree_queried_indices) #print ut.getTime(), "range neighbors: avg_len", avg_len, 'minlen', minlen, 'maxlen', maxlen #create HSV numpy images: # compute the hsv version of the image image_size = cv.cvGetSize(self.processor.img) img_h = cv.cvCreateImage(image_size, 8, 1) img_s = cv.cvCreateImage(image_size, 8, 1) img_v = cv.cvCreateImage(image_size, 8, 1) img_hsv = cv.cvCreateImage(image_size, 8, 3) cv.cvCvtColor(self.processor.img, img_hsv, cv.CV_BGR2HSV) cv.cvSplit(img_hsv, img_h, img_s, img_v, None) self.imNP_h = ut.cv2np(img_h) self.imNP_s = ut.cv2np(img_s) self.imNP_v = ut.cv2np(img_v) textures = texture_features.eigen_texture(self.processor.img) self.imNP_tex1 = textures[:, :, 0] self.imNP_tex2 = textures[:, :, 1] self.debug_before_first_featurevector = True self.generate_voi_histogram(self.processor.point_of_interest, self.processor.voi_width)
if mode == MODE_DETECT_OBSTACLES: screen.fill(white) queryWebcam() if time.time() > timer + 0.5: switchMode(MODE_DETECT_OBSTACLES2) elif mode == MODE_DETECT_OBSTACLES3: screen.fill(white) queryWebcam() if time.time() > timer + 0.5: action = "" switchMode(MODE_READY) elif mode == MODE_DETECT_OBSTACLES2: before = time.time() screen.fill(white) im = queryWebcam() opencv.cvCvtColor (im, igray, opencv.CV_BGR2GRAY) opencv.cvSmooth(igray, igray, opencv.CV_GAUSSIAN, 3, 3) opencv.cvAdaptiveThreshold(igray, iwhite, 255, opencv.CV_ADAPTIVE_THRESH_GAUSSIAN_C) num, contours = opencv.cvFindContours (iwhite, stor, opencv.sizeof_CvContour, opencv.CV_RETR_LIST) opencv.cvCvtColor(iwhite, im, opencv.CV_GRAY2BGR) staticImage = im retrieveObstacles(contours) switchMode(MODE_DETECT_OBSTACLES3) action = "Detection took: %.2f" % (time.time()-before) elif mode == MODE_READY: screen.fill(lgray) im = queryWebcam() opencv.cvCvtColor(im, igray, opencv.CV_BGR2GRAY)
def detect_and_draw(image): image_size = hg.cvGetSize(image) grayscale = cv.cvCreateImage(image_size, 8, 1) cv.cvCvtColor(image, grayscale, CV_RGB2GRAY) return grayscale
def hsv2rgb(img,copy=True): res=img.copy() opencv.cvCvtColor (img, res,opencv.CV_HSV2RGB) return res
def toGrayscale(self): grayscale = opencv.cvCreateImage(self.details.size(), 8, 1) opencv.cvCvtColor(self.image, grayscale, 6) opencv.cvEqualizeHist(grayscale, grayscale) return grayscale
def rgb2hsv(img,copy=True): res=img.copy() #print img, res, opencv.CV_RGB2HSV opencv.cvCvtColor (img, res, opencv.CV_RGB2HSV) return res
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # ## @author Hai Nguyen/[email protected] ##@package image_broadcaster # Broadcast image given on command line to topic 'image'. import rostools rostools.updatePath('gmmseg') import rospy import std_msgs.msg.Image as RImage import opencv.highgui as hg import opencv as cv import sys import time rospy.ready(sys.argv[0]) pub_channel = rospy.TopicPub('image', RImage) cv_image = hg.cvLoadImage(sys.argv[1]) cv.cvCvtColor(cv_image, cv_image, cv.CV_BGR2RGB) count = 1 while not rospy.isShutdown(): image = RImage(None, 'static', cv_image.width, cv_image.height, '', 'rgb24', cv_image.imageData) pub_channel.publish(image) print 'published', count count = count + 1 time.sleep(.3)