Example #1
0
    def detect(self, image):
        # image size is needed by underlying opencv lib to allocate memory
        image_size = opencv.cvGetSize(image)

        # the algorithm works with grayscale images
        grayscale = opencv.cvCreateImage(image_size, 8, 1)
        opencv.cvCvtColor(image, grayscale, opencv.CV_BGR2GRAY)

        # more underlying c lib memory allocation
        storage = opencv.cvCreateMemStorage(0)
        opencv.cvClearMemStorage(storage)

        # equalize histogram
        opencv.cvEqualizeHist(grayscale, grayscale)

        # detect faces using haar cascade, the used file is trained to
        # detect frontal faces
        cascade = opencv.cvLoadHaarClassifierCascade(
            'haarcascade_frontalface_alt.xml', opencv.cvSize(1, 1))
        faces = opencv.cvHaarDetectObjects(grayscale, cascade, storage, 1.2, 2,
                                           opencv.CV_HAAR_DO_CANNY_PRUNING,
                                           opencv.cvSize(100, 100))

        # draw rectangles around faces
        for face in faces:
            opencv.cvRectangle(
                image, opencv.cvPoint(int(face.x), int(face.y)),
                opencv.cvPoint(int(face.x + face.width),
                               int(face.y + face.height)),
                opencv.CV_RGB(127, 255, 0), 2)

        # return faces casted to list here, otherwise some obscure bug
        # in opencv will make it segfault if the casting happens later
        return image, list(faces)
Example #2
0
    def detect(self, image):
        # image size is needed by underlying opencv lib to allocate memory
        image_size = opencv.cvGetSize(image)

        # the algorithm works with grayscale images
        grayscale = opencv.cvCreateImage(image_size, 8, 1)
        opencv.cvCvtColor(image, grayscale, opencv.CV_BGR2GRAY)

        # more underlying c lib memory allocation
        storage = opencv.cvCreateMemStorage(0)
        opencv.cvClearMemStorage(storage)

        # equalize histogram
        opencv.cvEqualizeHist(grayscale, grayscale)

        # detect faces using haar cascade, the used file is trained to
        # detect frontal faces
        cascade = opencv.cvLoadHaarClassifierCascade(
            'haarcascade_frontalface_alt.xml', opencv.cvSize(1, 1))
        faces = opencv.cvHaarDetectObjects(
            grayscale, cascade, storage, 1.2, 2,
            opencv.CV_HAAR_DO_CANNY_PRUNING, opencv.cvSize(100, 100))

        # draw rectangles around faces
        for face in faces:
            opencv.cvRectangle(
                image, opencv.cvPoint(
                    int(face.x), int(face.y)),
                    opencv.cvPoint(int(face.x + face.width),
                    int(face.y + face.height)), opencv.CV_RGB(127, 255, 0), 2)

        # return faces casted to list here, otherwise some obscure bug
        # in opencv will make it segfault if the casting happens later
        return image, list(faces)
 def get_cascade(self, cascade_name):
     self._cached_cascades[
         cascade_name] = opencv.cvLoadHaarClassifierCascade(
             os.path.join(self.cascade_dir, cascade_name),
             opencv.cvSize(1, 1))
     #cascade_name, opencv.cvSize(1,1))
     return self._cached_cascades[cascade_name]
Example #4
0
	def __init__(self):
		conf = Configuration.get()
		hdir = conf['haar_classifiers_dir']
		
		self.haarfiles = [ cv.cvLoadHaarClassifierCascade(str(hdir + h), cv.cvSize(10, 10)) for h in conf['haar_classifiers'] ]

		self.camera_devices = glob(conf['cameras_glob'])
Example #5
0
File: fr.py Project: alien9/cam
def detect(image):
    # Find out how large the file is, as the underlying C-based code
    # needs to allocate memory in the following steps
    image_size = opencv.cvGetSize(image)

    # create grayscale version - this is also the point where the allegation about
    # facial recognition being racist might be most true. A caucasian face would have more
    # definition on a webcam image than an African face when greyscaled.
    # I would suggest that adding in a routine to overlay edge-detection enhancements may
    # help, but you would also need to do this to the training images as well.
    grayscale = opencv.cvCreateImage(image_size, 8, 1)
    opencv.cvCvtColor(image, grayscale, opencv.CV_BGR2GRAY)

    # create storage (It is C-based so you need to do this sort of thing)
    storage = opencv.cvCreateMemStorage(0)
    opencv.cvClearMemStorage(storage)

    # equalize histogram
    opencv.cvEqualizeHist(grayscale, grayscale)

    # detect objects - Haar cascade step
    # In this case, the code uses a frontal_face cascade - trained to spot faces that look directly
    # at the camera. In reality, I found that no bearded or hairy person must have been in the training
    # set of images, as the detection routine turned out to be beardist as well as a little racist!
    cascade = opencv.cvLoadHaarClassifierCascade('haarcascade_frontalface_alt.xml', opencv.cvSize(1,1))

    faces = opencv.cvHaarDetectObjects(grayscale, cascade, storage, 1.2, 2, opencv.CV_HAAR_DO_CANNY_PRUNING, opencv.cvSize(50, 50))

    if faces:
        for face in faces:
            # Hmm should I do a min-size check?
            # Draw a Chartreuse rectangle around the face - Chartruese rocks 
            opencv.cvRectangle(image, opencv.cvPoint( int(face.x), int(face.y)),
                         opencv.cvPoint(int(face.x + face.width), int(face.y + face.height)),
                         opencv.CV_RGB(127, 255, 0), 2) # RGB #7FFF00 width=2
Example #6
0
    def detectObject(self, classifier):
        self.grayscale = opencv.cvCreateImage(opencv.cvGetSize(self.iplimage), 8, 1)
        opencv.cvCvtColor(self.iplimage, self.grayscale, opencv.CV_BGR2GRAY)
        self.storage = opencv.cvCreateMemStorage(0)
        opencv.cvClearMemStorage(self.storage)
        opencv.cvEqualizeHist(self.grayscale, self.grayscale)

        try:
            self.cascade = opencv.cvLoadHaarClassifierCascade(os.path.join(os.path.dirname(__file__), classifier+".xml"),opencv.cvSize(1, 1))
        except:
            raise AttributeError("could not load classifier file")

        self.objects = opencv.cvHaarDetectObjects(self.grayscale, self.cascade, self.storage, 1.2, 2, opencv.CV_HAAR_DO_CANNY_PRUNING, opencv.cvSize(50, 50))

        return self.objects
Example #7
0
 def detectObject(self, classifier):
     self.grayscale = opencv.cvCreateImage(opencv.cvGetSize(self.iplimage), 8, 1)
     opencv.cvCvtColor(self.iplimage, self.grayscale, opencv.CV_BGR2GRAY)
     self.storage = opencv.cvCreateMemStorage(0)
     opencv.cvClearMemStorage(self.storage)
     opencv.cvEqualizeHist(self.grayscale, self.grayscale)
     
     try:
         self.cascade = opencv.cvLoadHaarClassifierCascade(os.path.join(os.path.dirname(__file__), classifier+".xml"),opencv.cvSize(1,1))
     except:
         raise AttributeError, "could not load classifier file"            
     
     self.objects = opencv.cvHaarDetectObjects(self.grayscale, self.cascade, self.storage, 1.2, 2, opencv.CV_HAAR_DO_CANNY_PRUNING, opencv.cvSize(50,50))
     
     return self.objects        
Example #8
0
    def detectFaces(self):
        self._faces = []
        frame = self._camera.getFrameAsIpl()
        storage = opencv.cvCreateMemStorage(0)
        opencv.cvClearMemStorage(storage)
        cascade = opencv.cvLoadHaarClassifierCascade(self._trainedHaar,
                                                     opencv.cvSize(1, 1))

        mugsht = opencv.cvHaarDetectObjects(frame, cascade, storage, 1.2, 2,
                                            opencv.CV_HAAR_DO_CANNY_PRUNING,
                                            opencv.cvSize(75, 75))
        if mugsht:
            for mug in mugsht:
                face = [0, 0, 0, 0]
                face[0], face[1], face[2], face[
                    3] = mug.x, mug.y, mug.width, mug.height
                self._faces.append(face)
Example #9
0
def detectHaar(iplimage, classifier):
    srcimage = opencv.cvCloneImage(iplimage)
    grayscale = opencv.cvCreateImage(opencv.cvGetSize(srcimage), 8, 1)
    opencv.cvCvtColor(srcimage, grayscale, opencv.CV_BGR2GRAY)
    storage = opencv.cvCreateMemStorage(0)
    opencv.cvClearMemStorage(storage)
    opencv.cvEqualizeHist(grayscale, grayscale)
    try:
        cascade = opencv.cvLoadHaarClassifierCascade(os.path.join(os.path.dirname(__file__), classifier + ".xml"), opencv.cvSize(1, 1))
    except:
        raise AttributeError("could not load classifier file")
    objs = opencv.cvHaarDetectObjects(grayscale, cascade, storage, 1.2, 2, opencv.CV_HAAR_DO_CANNY_PRUNING, opencv.cvSize(50, 50))
    objects = []
    for obj in objs:
        objects.append(Haarobj(obj))
    opencv.cvReleaseImage(srcimage)
    opencv.cvReleaseImage(grayscale)
    opencv.cvReleaseMemStorage(storage)
    return objects
Example #10
0
def detectHaar(iplimage, classifier):
    srcimage = opencv.cvCloneImage(iplimage)
    grayscale = opencv.cvCreateImage(opencv.cvGetSize(srcimage), 8, 1)
    opencv.cvCvtColor(srcimage, grayscale, opencv.CV_BGR2GRAY)
    storage = opencv.cvCreateMemStorage(0)
    opencv.cvClearMemStorage(storage)
    opencv.cvEqualizeHist(grayscale, grayscale)    
    try:
        cascade = opencv.cvLoadHaarClassifierCascade(os.path.join(os.path.dirname(__file__), classifier+".xml"),opencv.cvSize(1,1))
    except:
        raise AttributeError, "could not load classifier file"                
    objs = opencv.cvHaarDetectObjects(grayscale, cascade, storage, 1.2, 2, opencv.CV_HAAR_DO_CANNY_PRUNING, opencv.cvSize(50,50))    
    objects = []    
    for obj in objs:
        objects.append(Haarobj(obj))        
    opencv.cvReleaseImage(srcimage)
    opencv.cvReleaseImage(grayscale)
    opencv.cvReleaseMemStorage(storage)    
    return objects 
Example #11
0
    def detectFaces( self ):
        self._faces = []
        frame = self._camera.getFrameAsIpl()
        storage = opencv.cvCreateMemStorage( 0 )
        opencv.cvClearMemStorage( storage )
        cascade = opencv.cvLoadHaarClassifierCascade( self._trainedHaar, opencv.cvSize( 1, 1 ) )

        mugsht = opencv.cvHaarDetectObjects( frame,
                                             cascade,
                                             storage,
                                             1.2,
                                             2,
                                             opencv.CV_HAAR_DO_CANNY_PRUNING,
                                             opencv.cvSize( 75, 75 ) )
        if mugsht:
            for mug in mugsht:
                face = [ 0, 0, 0, 0 ]
                face[0], face[1], face[2], face[3] = mug.x, mug.y, mug.width, mug.height 
                self._faces.append( face )
Example #12
0
 def get_cascade(self, cascade_name):
   self._cached_cascades[cascade_name] = opencv.cvLoadHaarClassifierCascade(
           os.path.join(self.cascade_dir, cascade_name), opencv.cvSize(1,1))
           #cascade_name, opencv.cvSize(1,1))
   return self._cached_cascades[cascade_name]
Example #13
0
 def __init__(self,haarcascade="haarcascade_frontalface_alt.xml"):
   self.cascade = opencv.cvLoadHaarClassifierCascade(haarcascade,opencv.CvSize())
   self.storage = opencv.cvCreateMemStorage(0)
   opencv.cvClearMemStorage(self.storage)