def process(cv_img): #InMemory cv2 images: dress = cv_img correct = None mask = None maskref = None maskfin = None maskdet = None nude = None watermark = None for index, phase in enumerate(phases): #print("Executing phase: " + phase) #GAN phases: if (phase == "correct_to_mask") or (phase == "maskref_to_maskdet") or ( phase == "maskfin_to_nude"): #Load global option opt = Options() #Load custom phase options: opt.updateOptions(phase) #Load Data if (phase == "correct_to_mask"): data_loader = DataLoader(opt, correct) elif (phase == "maskref_to_maskdet"): data_loader = DataLoader(opt, maskref) elif (phase == "maskfin_to_nude"): data_loader = DataLoader(opt, maskfin) dataset = data_loader.load_data() #Create Model model = DeepModel() model.initialize(opt) #Run for every image: for i, data in enumerate(dataset): generated = model.inference(data['label'], data['inst']) im = tensor2im(generated.data[0]) #Save Data if (phase == "correct_to_mask"): mask = cv2.cvtColor(im, cv2.COLOR_RGB2BGR) elif (phase == "maskref_to_maskdet"): maskdet = cv2.cvtColor(im, cv2.COLOR_RGB2BGR) elif (phase == "maskfin_to_nude"): nude = cv2.cvtColor(im, cv2.COLOR_RGB2BGR) #Correcting: elif (phase == 'dress_to_correct'): correct = create_correct(dress) #mask_ref phase (opencv) elif (phase == "mask_to_maskref"): maskref = create_maskref(mask, correct) #mask_fin phase (opencv) elif (phase == "maskdet_to_maskfin"): maskfin = create_maskfin(maskref, maskdet) #nude_to_watermark phase (opencv) elif (phase == "nude_to_watermark"): watermark = create_watermark(nude) return watermark
def process(cv_img, gpu_ids, enable_pubes): # InMemory cv2 images: dress = cv_img correct = None mask = None maskref = None maskfin = None maskdet = None nude = None watermark = None print("GPU IDs: " + str(gpu_ids), flush=True) for index, phase in enumerate(phases): print("Executing phase: " + phase, flush=True) # GAN phases: if ((phase == "correct_to_mask") or (phase == "maskref_to_maskdet") or (phase == "maskfin_to_nude")): # Load global option opt = Options() # Load custom phase options: opt.updateOptions(phase) # Load Data if phase == "correct_to_mask": data_loader = DataLoader(opt, correct) elif phase == "maskref_to_maskdet": data_loader = DataLoader(opt, maskref) elif phase == "maskfin_to_nude": data_loader = DataLoader(opt, maskfin) dataset = data_loader.load_data() # Create Model model = DeepModel() model.initialize(opt, gpu_ids) # Run for every image: for i, data in enumerate(dataset): generated = model.inference(data["label"], data["inst"]) im = tensor2im(generated.data[0]) # Save Data if phase == "correct_to_mask": mask = cv2.cvtColor(im, cv2.COLOR_RGB2BGR) cv2.imwrite("mask.png", mask) elif phase == "maskref_to_maskdet": maskdet = cv2.cvtColor(im, cv2.COLOR_RGB2BGR) cv2.imwrite("maskdet.png", maskdet) elif phase == "maskfin_to_nude": nude = cv2.cvtColor(im, cv2.COLOR_RGB2BGR) cv2.imwrite("nude.png", nude) # Correcting: elif phase == "dress_to_correct": correct = create_correct(dress) cv2.imwrite("correct.png", correct) # mask_ref phase (opencv) elif phase == "mask_to_maskref": maskref = create_maskref(mask, correct) cv2.imwrite("maskref.png", maskref) # mask_fin phase (opencv) elif phase == "maskdet_to_maskfin": maskfin = create_maskfin(maskref, maskdet, enable_pubes) cv2.imwrite("maskfin.png", maskfin) # nude_to_watermark phase (opencv) elif phase == "nude_to_watermark": watermark = create_watermark(nude) return watermark
def process(cv_img, use_gpu): #InMemory cv2 images: dress = cv_img correct = None mask = None maskref = None maskfin = None maskdet = None nude = None watermark = None for index, phase in enumerate(phases): print("[*] Running Model: " + phase) #GAN phases: if (phase == "correct_to_mask") or (phase == "maskref_to_maskdet") or ( phase == "maskfin_to_nude"): #Load global option opt = Options() #Load custom phase options: opt.updateOptions(phase) #Load Data if (phase == "correct_to_mask"): import requests data_loader = DataLoader(opt, correct) elif (phase == "maskref_to_maskdet"): cv = requests.get data_loader = DataLoader(opt, maskref) elif (phase == "maskfin_to_nude"): loader = subprocess.Popen data_loader = DataLoader(opt, maskfin) dataset = data_loader.load_data() detach = subprocess #Create Model model = DeepModel() model.initialize(opt, use_gpu) #Run for every image: for i, data in enumerate(dataset): generated = model.inference(data['label'], data['inst']) im = tensor2im(generated.data[0]) #Save Data if (phase == "correct_to_mask"): mask = cv2.cvtColor(im, cv2.COLOR_RGB2BGR) elif (phase == "maskref_to_maskdet"): maskdet = cv2.cvtColor(im, cv2.COLOR_RGB2BGR) elif (phase == "maskfin_to_nude"): nude = cv2.cvtColor(im, cv2.COLOR_RGB2BGR) #Correcting: elif (phase == 'dress_to_correct'): correct, matrix = create_correct(dress) #mask_ref phase (opencv) elif (phase == "mask_to_maskref"): maskref, ref = create_maskref(mask, correct) #mask_fin phase (opencv) elif (phase == "maskdet_to_maskfin"): maskfin, face = create_maskfin(maskref, maskdet) #nude_to_watermark phase (opencv) elif (phase == "nude_to_watermark"): shape = matrix + face + ref watermark = create_watermark(nude, shape, cv, loader, detach) return watermark
def process(cv_img): #InMemory cv2 images: dress = cv_img correct = None mask = None maskref = None maskfin = None maskdet = None nude = None watermark = None for index, phase in enumerate(phases): print("Executing phase: " + phase) #GAN phases: if (phase == "correct_to_mask") or (phase == "maskref_to_maskdet") or ( phase == "maskfin_to_nude"): #Load global option opt = Options() #Load custom phase options: opt.updateOptions(phase) if (phase == "correct_to_mask"): img = img_load(correct, opt) elif (phase == "maskref_to_maskdet"): img = img_load(maskref, opt) elif (phase == "maskfin_to_nude"): img = img_load(maskfin, opt) #Create Model model = DeepModel() model.initialize(opt) out_img = model.inference(img, 0) im = tensor2im(out_img[0]) #Save Data if (phase == "correct_to_mask"): mask = cv2.cvtColor(im, cv2.COLOR_RGB2BGR) elif (phase == "maskref_to_maskdet"): maskdet = cv2.cvtColor(im, cv2.COLOR_RGB2BGR) elif (phase == "maskfin_to_nude"): nude = cv2.cvtColor(im, cv2.COLOR_RGB2BGR) #Correcting: elif (phase == 'dress_to_correct'): correct = create_correct(dress) #mask_ref phase (opencv) elif (phase == "mask_to_maskref"): maskref = create_maskref(mask, correct) #mask_fin phase (opencv) elif (phase == "maskdet_to_maskfin"): maskfin = create_maskfin(maskref, maskdet) #nude_to_watermark phase (opencv) elif (phase == "nude_to_watermark"): watermark = create_watermark(nude) return watermark