def post_orthophoto_steps(args, bounds_file_path, orthophoto_file, orthophoto_tiles_dir): if args.crop > 0 or args.boundary: Cropper.crop(bounds_file_path, orthophoto_file, get_orthophoto_vars(args), keep_original=not args.optimize_disk_space, warp_options=['-dstalpha']) if args.build_overviews and not args.cog: build_overviews(orthophoto_file) if args.orthophoto_png: generate_png(orthophoto_file) if args.orthophoto_kmz: generate_kmz(orthophoto_file) if args.tiles: generate_orthophoto_tiles(orthophoto_file, orthophoto_tiles_dir, args.max_concurrency) if args.cog: convert_to_cogeo(orthophoto_file, max_workers=args.max_concurrency, compression=args.orthophoto_compression)
def merge_dems(dem_filename, human_name): if not io.dir_exists(tree.path('odm_dem')): system.mkdir_p(tree.path('odm_dem')) dem_file = tree.path("odm_dem", dem_filename) if not io.file_exists(dem_file) or self.rerun(): all_dems = get_submodel_paths(tree.submodels_path, "odm_dem", dem_filename) log.ODM_INFO("Merging %ss" % human_name) # Merge dem_vars = utils.get_dem_vars(args) eu_map_source = None # Default # Use DSM's euclidean map for DTMs # (requires the DSM to be computed) if human_name == "DTM": eu_map_source = "dsm" euclidean_merge_dems(all_dems, dem_file, dem_vars, euclidean_map_source=eu_map_source) if io.file_exists(dem_file): # Crop if args.crop > 0 or args.boundary: Cropper.crop( merged_bounds_file, dem_file, dem_vars, keep_original=not args.optimize_disk_space) log.ODM_INFO("Created %s" % dem_file) if args.tiles: generate_dem_tiles( dem_file, tree.path("%s_tiles" % human_name.lower()), args.max_concurrency) if args.cog: convert_to_cogeo(dem_file, max_workers=args.max_concurrency) else: log.ODM_WARNING("Cannot merge %s, %s was not created" % (human_name, dem_file)) else: log.ODM_WARNING("Found merged %s in %s" % (human_name, dem_filename))
def process(self, args, outputs): tree = outputs['tree'] reconstruction = outputs['reconstruction'] dem_input = tree.odm_georeferencing_model_laz pc_model_found = io.file_exists(dem_input) ignore_resolution = False pseudo_georeference = False if not reconstruction.is_georeferenced(): log.ODM_WARNING( "Not georeferenced, using ungeoreferenced point cloud...") ignore_resolution = True pseudo_georeference = True # It is probably not reasonable to have accurate DEMs a the same resolution as the source photos, so reduce it # by a factor! gsd_scaling = 2.0 resolution = gsd.cap_resolution(args.dem_resolution, tree.opensfm_reconstruction, gsd_scaling=gsd_scaling, ignore_gsd=args.ignore_gsd, ignore_resolution=ignore_resolution and args.ignore_gsd, has_gcp=reconstruction.has_gcp()) log.ODM_INFO('Classify: ' + str(args.pc_classify)) log.ODM_INFO('Create DSM: ' + str(args.dsm)) log.ODM_INFO('Create DTM: ' + str(args.dtm)) log.ODM_INFO('DEM input file {0} found: {1}'.format( dem_input, str(pc_model_found))) # define paths and create working directories odm_dem_root = tree.path('odm_dem') if not io.dir_exists(odm_dem_root): system.mkdir_p(odm_dem_root) if args.pc_classify and pc_model_found: pc_classify_marker = os.path.join(odm_dem_root, 'pc_classify_done.txt') if not io.file_exists(pc_classify_marker) or self.rerun(): log.ODM_INFO( "Classifying {} using Simple Morphological Filter".format( dem_input)) commands.classify(dem_input, args.smrf_scalar, args.smrf_slope, args.smrf_threshold, args.smrf_window, verbose=args.verbose) with open(pc_classify_marker, 'w') as f: f.write('Classify: smrf\n') f.write('Scalar: {}\n'.format(args.smrf_scalar)) f.write('Slope: {}\n'.format(args.smrf_slope)) f.write('Threshold: {}\n'.format(args.smrf_threshold)) f.write('Window: {}\n'.format(args.smrf_window)) progress = 20 self.update_progress(progress) if args.pc_rectify: commands.rectify(dem_input, args.debug) # Do we need to process anything here? if (args.dsm or args.dtm) and pc_model_found: dsm_output_filename = os.path.join(odm_dem_root, 'dsm.tif') dtm_output_filename = os.path.join(odm_dem_root, 'dtm.tif') if (args.dtm and not io.file_exists(dtm_output_filename)) or \ (args.dsm and not io.file_exists(dsm_output_filename)) or \ self.rerun(): products = [] if args.dsm or (args.dtm and args.dem_euclidean_map): products.append('dsm') if args.dtm: products.append('dtm') radius_steps = [(resolution / 100.0) / 2.0] for _ in range(args.dem_gapfill_steps - 1): radius_steps.append( radius_steps[-1] * 2) # 2 is arbitrary, maybe there's a better value? for product in products: commands.create_dem( dem_input, product, output_type='idw' if product == 'dtm' else 'max', radiuses=list(map(str, radius_steps)), gapfill=args.dem_gapfill_steps > 0, outdir=odm_dem_root, resolution=resolution / 100.0, decimation=args.dem_decimation, verbose=args.verbose, max_workers=args.max_concurrency, keep_unfilled_copy=args.dem_euclidean_map) dem_geotiff_path = os.path.join(odm_dem_root, "{}.tif".format(product)) bounds_file_path = os.path.join( tree.odm_georeferencing, 'odm_georeferenced_model.bounds.gpkg') if args.crop > 0 or args.boundary: # Crop DEM Cropper.crop( bounds_file_path, dem_geotiff_path, utils.get_dem_vars(args), keep_original=not args.optimize_disk_space) if args.dem_euclidean_map: unfilled_dem_path = io.related_file_path( dem_geotiff_path, postfix=".unfilled") if args.crop > 0 or args.boundary: # Crop unfilled DEM Cropper.crop( bounds_file_path, unfilled_dem_path, utils.get_dem_vars(args), keep_original=not args.optimize_disk_space) commands.compute_euclidean_map( unfilled_dem_path, io.related_file_path(dem_geotiff_path, postfix=".euclideand"), overwrite=True) if pseudo_georeference: pseudogeo.add_pseudo_georeferencing(dem_geotiff_path) if args.tiles: generate_dem_tiles(dem_geotiff_path, tree.path("%s_tiles" % product), args.max_concurrency) if args.cog: convert_to_cogeo(dem_geotiff_path, max_workers=args.max_concurrency) progress += 30 self.update_progress(progress) else: log.ODM_WARNING('Found existing outputs in: %s' % odm_dem_root) else: log.ODM_WARNING('DEM will not be generated')