Example #1
0
def post_point_cloud_steps(args, tree):
    # XYZ point cloud output
    if args.pc_csv:
        log.ODM_INFO("Creating CSV file (XYZ format)")
        
        system.run("pdal translate -i \"{}\" "
            "-o \"{}\" "
            "--writers.text.format=csv "
            "--writers.text.order=\"X,Y,Z\" "
            "--writers.text.keep_unspecified=false ".format(
                tree.odm_georeferencing_model_laz,
                tree.odm_georeferencing_xyz_file))

    # LAS point cloud output
    if args.pc_las:
        log.ODM_INFO("Creating LAS file")
        
        system.run("pdal translate -i \"{}\" "
            "-o \"{}\" ".format(
                tree.odm_georeferencing_model_laz,
                tree.odm_georeferencing_model_las))

    # EPT point cloud output
    if args.pc_ept:
        log.ODM_INFO("Creating Entwine Point Tile output")
        entwine.build([tree.odm_georeferencing_model_laz], tree.entwine_pointcloud, max_concurrency=args.max_concurrency, rerun=False)
Example #2
0
def post_point_cloud_steps(args, tree, rerun=False):
    # XYZ point cloud output
    if args.pc_csv:
        log.ODM_INFO("Creating CSV file (XYZ format)")

        if not io.file_exists(tree.odm_georeferencing_xyz_file) or rerun:
            system.run("pdal translate -i \"{}\" "
                       "-o \"{}\" "
                       "--writers.text.format=csv "
                       "--writers.text.order=\"X,Y,Z\" "
                       "--writers.text.keep_unspecified=false ".format(
                           tree.odm_georeferencing_model_laz,
                           tree.odm_georeferencing_xyz_file))
        else:
            log.ODM_WARNING("Found existing CSV file %s" %
                            tree.odm_georeferencing_xyz_file)

    # LAS point cloud output
    if args.pc_las:
        log.ODM_INFO("Creating LAS file")

        if not io.file_exists(tree.odm_georeferencing_model_las) or rerun:
            system.run("pdal translate -i \"{}\" "
                       "-o \"{}\" ".format(tree.odm_georeferencing_model_laz,
                                           tree.odm_georeferencing_model_las))
        else:
            log.ODM_WARNING("Found existing LAS file %s" %
                            tree.odm_georeferencing_xyz_file)

    # EPT point cloud output
    if args.pc_ept:
        log.ODM_INFO("Creating Entwine Point Tile output")
        entwine.build([tree.odm_georeferencing_model_laz],
                      tree.entwine_pointcloud,
                      max_concurrency=args.max_concurrency,
                      rerun=rerun)

    # COPC point clouds
    if args.pc_copc:
        log.ODM_INFO("Creating Cloud Optimized Point Cloud (COPC)")

        copc_output = io.related_file_path(tree.odm_georeferencing_model_laz,
                                           postfix=".copc")
        entwine.build_copc([tree.odm_georeferencing_model_laz], copc_output)
Example #3
0
    def process(self, args, outputs):
        tree = outputs['tree']
        reconstruction = outputs['reconstruction']

        if outputs['large']:
            if not os.path.exists(tree.submodels_path):
                log.ODM_ERROR(
                    "We reached the merge stage, but %s folder does not exist. Something must have gone wrong at an earlier stage. Check the log and fix possible problem before restarting?"
                    % tree.submodels_path)
                exit(1)

            # Merge point clouds
            if args.merge in ['all', 'pointcloud']:
                if not io.file_exists(
                        tree.odm_georeferencing_model_laz) or self.rerun():
                    all_point_clouds = get_submodel_paths(
                        tree.submodels_path, "odm_georeferencing",
                        "odm_georeferenced_model.laz")

                    try:
                        # pdal.merge_point_clouds(all_point_clouds, tree.odm_georeferencing_model_laz, args.verbose)
                        entwine.build(all_point_clouds,
                                      tree.entwine_pointcloud,
                                      max_concurrency=args.max_concurrency,
                                      rerun=self.rerun())
                    except Exception as e:
                        log.ODM_WARNING(
                            "Could not merge point cloud: %s (skipping)" %
                            str(e))

                    if io.dir_exists(tree.entwine_pointcloud):
                        try:
                            system.run('pdal translate "ept://{}" "{}"'.format(
                                tree.entwine_pointcloud,
                                tree.odm_georeferencing_model_laz))
                        except Exception as e:
                            log.ODM_WARNING(
                                "Cannot export EPT dataset to LAZ: %s" %
                                str(e))
                else:
                    log.ODM_WARNING("Found merged point cloud in %s" %
                                    tree.odm_georeferencing_model_laz)

            self.update_progress(25)

            # Merge crop bounds
            merged_bounds_file = os.path.join(
                tree.odm_georeferencing, 'odm_georeferenced_model.bounds.gpkg')
            if not io.file_exists(merged_bounds_file) or self.rerun():
                all_bounds = get_submodel_paths(
                    tree.submodels_path, 'odm_georeferencing',
                    'odm_georeferenced_model.bounds.gpkg')
                log.ODM_INFO("Merging all crop bounds: %s" % all_bounds)
                if len(all_bounds) > 0:
                    # Calculate a new crop area
                    # based on the convex hull of all crop areas of all submodels
                    # (without a buffer, otherwise we are double-cropping)
                    Cropper.merge_bounds(all_bounds, merged_bounds_file, 0)
                else:
                    log.ODM_WARNING("No bounds found for any submodel.")

            # Merge orthophotos
            if args.merge in ['all', 'orthophoto']:
                if not io.dir_exists(tree.odm_orthophoto):
                    system.mkdir_p(tree.odm_orthophoto)

                if not io.file_exists(tree.odm_orthophoto_tif) or self.rerun():
                    all_orthos_and_cutlines = get_all_submodel_paths(
                        tree.submodels_path,
                        os.path.join("odm_orthophoto", "odm_orthophoto.tif"),
                        os.path.join("odm_orthophoto", "cutline.gpkg"),
                    )

                    if len(all_orthos_and_cutlines) > 1:
                        log.ODM_INFO(
                            "Found %s submodels with valid orthophotos and cutlines"
                            % len(all_orthos_and_cutlines))

                        # TODO: histogram matching via rasterio
                        # currently parts have different color tones

                        merged_geotiff = os.path.join(
                            tree.odm_orthophoto, "odm_orthophoto.merged.tif")

                        kwargs = {
                            'orthophoto_merged':
                            merged_geotiff,
                            'input_files':
                            ' '.join(
                                map(lambda i: quote(i[0]),
                                    all_orthos_and_cutlines)),
                            'max_memory':
                            get_max_memory(),
                            'threads':
                            args.max_concurrency,
                        }

                        # use bounds as cutlines (blending)
                        if io.file_exists(merged_geotiff):
                            os.remove(merged_geotiff)

                        system.run('gdal_merge.py -o {orthophoto_merged} '
                                   #'-createonly '
                                   '-co "BIGTIFF=YES" '
                                   '-co "BLOCKXSIZE=512" '
                                   '-co "BLOCKYSIZE=512" '
                                   '--config GDAL_CACHEMAX {max_memory}% '
                                   '{input_files} '.format(**kwargs))

                        for ortho_cutline in all_orthos_and_cutlines:
                            kwargs['input_file'], kwargs[
                                'cutline'] = ortho_cutline

                            # Note: cblend has a high performance penalty
                            system.run(
                                'gdalwarp -cutline {cutline} '
                                '-cblend 20 '
                                '-r bilinear -multi '
                                '-wo NUM_THREADS={threads} '
                                '--config GDAL_CACHEMAX {max_memory}% '
                                '{input_file} {orthophoto_merged}'.format(
                                    **kwargs))

                        # Apply orthophoto settings (compression, tiling, etc.)
                        orthophoto_vars = orthophoto.get_orthophoto_vars(args)

                        if io.file_exists(tree.odm_orthophoto_tif):
                            os.remove(tree.odm_orthophoto_tif)

                        kwargs = {
                            'vars':
                            ' '.join([
                                '-co %s=%s' % (k, orthophoto_vars[k])
                                for k in orthophoto_vars
                            ]),
                            'max_memory':
                            get_max_memory(),
                            'merged':
                            merged_geotiff,
                            'log':
                            tree.odm_orthophoto_tif_log,
                            'orthophoto':
                            tree.odm_orthophoto_tif,
                        }

                        system.run(
                            'gdal_translate '
                            '{vars} '
                            '--config GDAL_CACHEMAX {max_memory}% '
                            '{merged} {orthophoto} > {log}'.format(**kwargs))

                        os.remove(merged_geotiff)

                        # Crop
                        if args.crop > 0:
                            Cropper.crop(merged_bounds_file,
                                         tree.odm_orthophoto_tif,
                                         orthophoto_vars)

                        # Overviews
                        if args.build_overviews:
                            orthophoto.build_overviews(tree.odm_orthophoto_tif)

                    elif len(all_orthos_and_cutlines) == 1:
                        # Simply copy
                        log.ODM_WARNING(
                            "A single orthophoto/cutline pair was found between all submodels."
                        )
                        shutil.copyfile(all_orthos_and_cutlines[0][0],
                                        tree.odm_orthophoto_tif)
                    else:
                        log.ODM_WARNING(
                            "No orthophoto/cutline pairs were found in any of the submodels. No orthophoto will be generated."
                        )
                else:
                    log.ODM_WARNING("Found merged orthophoto in %s" %
                                    tree.odm_orthophoto_tif)

            self.update_progress(75)

            # Merge DEMs
            def merge_dems(dem_filename, human_name):
                if not io.dir_exists(tree.path('odm_dem')):
                    system.mkdir_p(tree.path('odm_dem'))

                dem_file = tree.path("odm_dem", dem_filename)
                if not io.file_exists(dem_file) or self.rerun():
                    all_dems = get_submodel_paths(tree.submodels_path,
                                                  "odm_dem", dem_filename)
                    log.ODM_INFO("Merging %ss" % human_name)

                    # Merge
                    dem_vars = utils.get_dem_vars(args)
                    euclidean_merge_dems(all_dems, dem_file, dem_vars)

                    if io.file_exists(dem_file):
                        # Crop
                        if args.crop > 0:
                            Cropper.crop(merged_bounds_file, dem_file,
                                         dem_vars)
                        log.ODM_INFO("Created %s" % dem_file)
                    else:
                        log.ODM_WARNING("Cannot merge %s, %s was not created" %
                                        (human_name, dem_file))
                else:
                    log.ODM_WARNING("Found merged %s in %s" %
                                    (human_name, dem_filename))

            if args.merge in ['all', 'dem'] and args.dsm:
                merge_dems("dsm.tif", "DSM")

            if args.merge in ['all', 'dem'] and args.dtm:
                merge_dems("dtm.tif", "DTM")

            # Stop the pipeline short! We're done.
            self.next_stage = None
        else:
            log.ODM_INFO("Normal dataset, nothing to merge.")
            self.progress = 0.0
Example #4
0
    def process(self, args, outputs):
        tree = outputs['tree']
        reconstruction = outputs['reconstruction']

        doPointCloudGeo = True
        transformPointCloud = True
        verbose = '-verbose' if self.params.get('verbose') else ''

        runs = [{
            'georeferencing_dir':
            tree.odm_georeferencing,
            'texturing_dir':
            tree.odm_texturing,
            'model':
            os.path.join(tree.odm_texturing, tree.odm_textured_model_obj)
        }]

        if args.skip_3dmodel:
            runs = []

        if not args.use_3dmesh:
            # Make sure 2.5D mesh is georeferenced before the 3D mesh
            # Because it will be used to calculate a transform
            # for the point cloud. If we use the 3D model transform,
            # DEMs and orthophoto might not align!
            runs.insert(
                0, {
                    'georeferencing_dir':
                    tree.odm_25dgeoreferencing,
                    'texturing_dir':
                    tree.odm_25dtexturing,
                    'model':
                    os.path.join(tree.odm_25dtexturing,
                                 tree.odm_textured_model_obj)
                })

        for r in runs:
            odm_georeferencing_model_obj_geo = os.path.join(
                r['texturing_dir'], tree.odm_georeferencing_model_obj_geo)
            odm_georeferencing_log = os.path.join(r['georeferencing_dir'],
                                                  tree.odm_georeferencing_log)
            odm_georeferencing_transform_file = os.path.join(
                r['georeferencing_dir'],
                tree.odm_georeferencing_transform_file)
            odm_georeferencing_model_txt_geo_file = os.path.join(
                r['georeferencing_dir'], tree.odm_georeferencing_model_txt_geo)

            if not io.file_exists(odm_georeferencing_model_obj_geo) or \
               not io.file_exists(tree.odm_georeferencing_model_laz) or self.rerun():

                # odm_georeference definitions
                kwargs = {
                    'bin': context.odm_modules_path,
                    'input_pc_file': tree.filtered_point_cloud,
                    'bundle': tree.opensfm_bundle,
                    'imgs': tree.dataset_raw,
                    'imgs_list': tree.opensfm_bundle_list,
                    'model': r['model'],
                    'log': odm_georeferencing_log,
                    'input_trans_file': tree.opensfm_transformation,
                    'transform_file': odm_georeferencing_transform_file,
                    'coords': tree.odm_georeferencing_coords,
                    'output_pc_file': tree.odm_georeferencing_model_laz,
                    'geo_sys': odm_georeferencing_model_txt_geo_file,
                    'model_geo': odm_georeferencing_model_obj_geo,
                    'verbose': verbose
                }

                if transformPointCloud:
                    kwargs[
                        'pc_params'] = '-inputPointCloudFile {input_pc_file} -outputPointCloudFile {output_pc_file}'.format(
                            **kwargs)

                    if reconstruction.is_georeferenced():
                        kwargs[
                            'pc_params'] += ' -outputPointCloudSrs %s' % pipes.quote(
                                reconstruction.georef.proj4())
                    else:
                        log.ODM_WARNING(
                            'NO SRS: The output point cloud will not have a SRS.'
                        )
                else:
                    kwargs['pc_params'] = ''

                if io.file_exists(
                        tree.opensfm_transformation) and io.file_exists(
                            tree.odm_georeferencing_coords):
                    log.ODM_INFO(
                        'Running georeferencing with OpenSfM transformation matrix'
                    )
                    system.run(
                        '{bin}/odm_georef -bundleFile {bundle} -inputTransformFile {input_trans_file} -inputCoordFile {coords} '
                        '-inputFile {model} -outputFile {model_geo} '
                        '{pc_params} {verbose} '
                        '-logFile {log} -outputTransformFile {transform_file} -georefFileOutputPath {geo_sys}'
                        .format(**kwargs))
                elif io.file_exists(tree.odm_georeferencing_coords):
                    log.ODM_INFO(
                        'Running georeferencing with generated coords file.')
                    system.run(
                        '{bin}/odm_georef -bundleFile {bundle} -inputCoordFile {coords} '
                        '-inputFile {model} -outputFile {model_geo} '
                        '{pc_params} {verbose} '
                        '-logFile {log} -outputTransformFile {transform_file} -georefFileOutputPath {geo_sys}'
                        .format(**kwargs))
                else:
                    log.ODM_WARNING(
                        'Georeferencing failed. Make sure your '
                        'photos have geotags in the EXIF or you have '
                        'provided a GCP file. ')
                    doPointCloudGeo = False  # skip the rest of the georeferencing

                if doPointCloudGeo:
                    reconstruction.georef.extract_offsets(
                        odm_georeferencing_model_txt_geo_file)

                    # XYZ point cloud output
                    if args.pc_csv:
                        log.ODM_INFO(
                            "Creating geo-referenced CSV file (XYZ format)")

                        system.run(
                            "pdal translate -i \"{}\" "
                            "-o \"{}\" "
                            "--writers.text.format=csv "
                            "--writers.text.order=\"X,Y,Z\" "
                            "--writers.text.keep_unspecified=false ".format(
                                tree.odm_georeferencing_model_laz,
                                tree.odm_georeferencing_xyz_file))

                    # LAS point cloud output
                    if args.pc_las:
                        log.ODM_INFO("Creating geo-referenced LAS file")

                        system.run("pdal translate -i \"{}\" "
                                   "-o \"{}\" ".format(
                                       tree.odm_georeferencing_model_laz,
                                       tree.odm_georeferencing_model_las))

                    # EPT point cloud output
                    if args.pc_ept:
                        log.ODM_INFO(
                            "Creating geo-referenced Entwine Point Tile output"
                        )
                        entwine.build([tree.odm_georeferencing_model_laz],
                                      tree.entwine_pointcloud,
                                      max_concurrency=args.max_concurrency,
                                      rerun=self.rerun())

                    if args.crop > 0:
                        log.ODM_INFO(
                            "Calculating cropping area and generating bounds shapefile from point cloud"
                        )
                        cropper = Cropper(tree.odm_georeferencing,
                                          'odm_georeferenced_model')

                        decimation_step = 40 if args.fast_orthophoto or args.use_opensfm_dense else 90

                        # More aggressive decimation for large datasets
                        if not args.fast_orthophoto:
                            decimation_step *= int(
                                len(reconstruction.photos) / 1000) + 1

                        cropper.create_bounds_gpkg(
                            tree.odm_georeferencing_model_laz,
                            args.crop,
                            decimation_step=decimation_step)

                    # Do not execute a second time, since
                    # We might be doing georeferencing for
                    # multiple models (3D, 2.5D, ...)
                    doPointCloudGeo = False
                    transformPointCloud = False
            else:
                log.ODM_WARNING('Found a valid georeferenced model in: %s' %
                                tree.odm_georeferencing_model_laz)