def post_point_cloud_steps(args, tree): # XYZ point cloud output if args.pc_csv: log.ODM_INFO("Creating CSV file (XYZ format)") system.run("pdal translate -i \"{}\" " "-o \"{}\" " "--writers.text.format=csv " "--writers.text.order=\"X,Y,Z\" " "--writers.text.keep_unspecified=false ".format( tree.odm_georeferencing_model_laz, tree.odm_georeferencing_xyz_file)) # LAS point cloud output if args.pc_las: log.ODM_INFO("Creating LAS file") system.run("pdal translate -i \"{}\" " "-o \"{}\" ".format( tree.odm_georeferencing_model_laz, tree.odm_georeferencing_model_las)) # EPT point cloud output if args.pc_ept: log.ODM_INFO("Creating Entwine Point Tile output") entwine.build([tree.odm_georeferencing_model_laz], tree.entwine_pointcloud, max_concurrency=args.max_concurrency, rerun=False)
def post_point_cloud_steps(args, tree, rerun=False): # XYZ point cloud output if args.pc_csv: log.ODM_INFO("Creating CSV file (XYZ format)") if not io.file_exists(tree.odm_georeferencing_xyz_file) or rerun: system.run("pdal translate -i \"{}\" " "-o \"{}\" " "--writers.text.format=csv " "--writers.text.order=\"X,Y,Z\" " "--writers.text.keep_unspecified=false ".format( tree.odm_georeferencing_model_laz, tree.odm_georeferencing_xyz_file)) else: log.ODM_WARNING("Found existing CSV file %s" % tree.odm_georeferencing_xyz_file) # LAS point cloud output if args.pc_las: log.ODM_INFO("Creating LAS file") if not io.file_exists(tree.odm_georeferencing_model_las) or rerun: system.run("pdal translate -i \"{}\" " "-o \"{}\" ".format(tree.odm_georeferencing_model_laz, tree.odm_georeferencing_model_las)) else: log.ODM_WARNING("Found existing LAS file %s" % tree.odm_georeferencing_xyz_file) # EPT point cloud output if args.pc_ept: log.ODM_INFO("Creating Entwine Point Tile output") entwine.build([tree.odm_georeferencing_model_laz], tree.entwine_pointcloud, max_concurrency=args.max_concurrency, rerun=rerun) # COPC point clouds if args.pc_copc: log.ODM_INFO("Creating Cloud Optimized Point Cloud (COPC)") copc_output = io.related_file_path(tree.odm_georeferencing_model_laz, postfix=".copc") entwine.build_copc([tree.odm_georeferencing_model_laz], copc_output)
def process(self, args, outputs): tree = outputs['tree'] reconstruction = outputs['reconstruction'] if outputs['large']: if not os.path.exists(tree.submodels_path): log.ODM_ERROR( "We reached the merge stage, but %s folder does not exist. Something must have gone wrong at an earlier stage. Check the log and fix possible problem before restarting?" % tree.submodels_path) exit(1) # Merge point clouds if args.merge in ['all', 'pointcloud']: if not io.file_exists( tree.odm_georeferencing_model_laz) or self.rerun(): all_point_clouds = get_submodel_paths( tree.submodels_path, "odm_georeferencing", "odm_georeferenced_model.laz") try: # pdal.merge_point_clouds(all_point_clouds, tree.odm_georeferencing_model_laz, args.verbose) entwine.build(all_point_clouds, tree.entwine_pointcloud, max_concurrency=args.max_concurrency, rerun=self.rerun()) except Exception as e: log.ODM_WARNING( "Could not merge point cloud: %s (skipping)" % str(e)) if io.dir_exists(tree.entwine_pointcloud): try: system.run('pdal translate "ept://{}" "{}"'.format( tree.entwine_pointcloud, tree.odm_georeferencing_model_laz)) except Exception as e: log.ODM_WARNING( "Cannot export EPT dataset to LAZ: %s" % str(e)) else: log.ODM_WARNING("Found merged point cloud in %s" % tree.odm_georeferencing_model_laz) self.update_progress(25) # Merge crop bounds merged_bounds_file = os.path.join( tree.odm_georeferencing, 'odm_georeferenced_model.bounds.gpkg') if not io.file_exists(merged_bounds_file) or self.rerun(): all_bounds = get_submodel_paths( tree.submodels_path, 'odm_georeferencing', 'odm_georeferenced_model.bounds.gpkg') log.ODM_INFO("Merging all crop bounds: %s" % all_bounds) if len(all_bounds) > 0: # Calculate a new crop area # based on the convex hull of all crop areas of all submodels # (without a buffer, otherwise we are double-cropping) Cropper.merge_bounds(all_bounds, merged_bounds_file, 0) else: log.ODM_WARNING("No bounds found for any submodel.") # Merge orthophotos if args.merge in ['all', 'orthophoto']: if not io.dir_exists(tree.odm_orthophoto): system.mkdir_p(tree.odm_orthophoto) if not io.file_exists(tree.odm_orthophoto_tif) or self.rerun(): all_orthos_and_cutlines = get_all_submodel_paths( tree.submodels_path, os.path.join("odm_orthophoto", "odm_orthophoto.tif"), os.path.join("odm_orthophoto", "cutline.gpkg"), ) if len(all_orthos_and_cutlines) > 1: log.ODM_INFO( "Found %s submodels with valid orthophotos and cutlines" % len(all_orthos_and_cutlines)) # TODO: histogram matching via rasterio # currently parts have different color tones merged_geotiff = os.path.join( tree.odm_orthophoto, "odm_orthophoto.merged.tif") kwargs = { 'orthophoto_merged': merged_geotiff, 'input_files': ' '.join( map(lambda i: quote(i[0]), all_orthos_and_cutlines)), 'max_memory': get_max_memory(), 'threads': args.max_concurrency, } # use bounds as cutlines (blending) if io.file_exists(merged_geotiff): os.remove(merged_geotiff) system.run('gdal_merge.py -o {orthophoto_merged} ' #'-createonly ' '-co "BIGTIFF=YES" ' '-co "BLOCKXSIZE=512" ' '-co "BLOCKYSIZE=512" ' '--config GDAL_CACHEMAX {max_memory}% ' '{input_files} '.format(**kwargs)) for ortho_cutline in all_orthos_and_cutlines: kwargs['input_file'], kwargs[ 'cutline'] = ortho_cutline # Note: cblend has a high performance penalty system.run( 'gdalwarp -cutline {cutline} ' '-cblend 20 ' '-r bilinear -multi ' '-wo NUM_THREADS={threads} ' '--config GDAL_CACHEMAX {max_memory}% ' '{input_file} {orthophoto_merged}'.format( **kwargs)) # Apply orthophoto settings (compression, tiling, etc.) orthophoto_vars = orthophoto.get_orthophoto_vars(args) if io.file_exists(tree.odm_orthophoto_tif): os.remove(tree.odm_orthophoto_tif) kwargs = { 'vars': ' '.join([ '-co %s=%s' % (k, orthophoto_vars[k]) for k in orthophoto_vars ]), 'max_memory': get_max_memory(), 'merged': merged_geotiff, 'log': tree.odm_orthophoto_tif_log, 'orthophoto': tree.odm_orthophoto_tif, } system.run( 'gdal_translate ' '{vars} ' '--config GDAL_CACHEMAX {max_memory}% ' '{merged} {orthophoto} > {log}'.format(**kwargs)) os.remove(merged_geotiff) # Crop if args.crop > 0: Cropper.crop(merged_bounds_file, tree.odm_orthophoto_tif, orthophoto_vars) # Overviews if args.build_overviews: orthophoto.build_overviews(tree.odm_orthophoto_tif) elif len(all_orthos_and_cutlines) == 1: # Simply copy log.ODM_WARNING( "A single orthophoto/cutline pair was found between all submodels." ) shutil.copyfile(all_orthos_and_cutlines[0][0], tree.odm_orthophoto_tif) else: log.ODM_WARNING( "No orthophoto/cutline pairs were found in any of the submodels. No orthophoto will be generated." ) else: log.ODM_WARNING("Found merged orthophoto in %s" % tree.odm_orthophoto_tif) self.update_progress(75) # Merge DEMs def merge_dems(dem_filename, human_name): if not io.dir_exists(tree.path('odm_dem')): system.mkdir_p(tree.path('odm_dem')) dem_file = tree.path("odm_dem", dem_filename) if not io.file_exists(dem_file) or self.rerun(): all_dems = get_submodel_paths(tree.submodels_path, "odm_dem", dem_filename) log.ODM_INFO("Merging %ss" % human_name) # Merge dem_vars = utils.get_dem_vars(args) euclidean_merge_dems(all_dems, dem_file, dem_vars) if io.file_exists(dem_file): # Crop if args.crop > 0: Cropper.crop(merged_bounds_file, dem_file, dem_vars) log.ODM_INFO("Created %s" % dem_file) else: log.ODM_WARNING("Cannot merge %s, %s was not created" % (human_name, dem_file)) else: log.ODM_WARNING("Found merged %s in %s" % (human_name, dem_filename)) if args.merge in ['all', 'dem'] and args.dsm: merge_dems("dsm.tif", "DSM") if args.merge in ['all', 'dem'] and args.dtm: merge_dems("dtm.tif", "DTM") # Stop the pipeline short! We're done. self.next_stage = None else: log.ODM_INFO("Normal dataset, nothing to merge.") self.progress = 0.0
def process(self, args, outputs): tree = outputs['tree'] reconstruction = outputs['reconstruction'] doPointCloudGeo = True transformPointCloud = True verbose = '-verbose' if self.params.get('verbose') else '' runs = [{ 'georeferencing_dir': tree.odm_georeferencing, 'texturing_dir': tree.odm_texturing, 'model': os.path.join(tree.odm_texturing, tree.odm_textured_model_obj) }] if args.skip_3dmodel: runs = [] if not args.use_3dmesh: # Make sure 2.5D mesh is georeferenced before the 3D mesh # Because it will be used to calculate a transform # for the point cloud. If we use the 3D model transform, # DEMs and orthophoto might not align! runs.insert( 0, { 'georeferencing_dir': tree.odm_25dgeoreferencing, 'texturing_dir': tree.odm_25dtexturing, 'model': os.path.join(tree.odm_25dtexturing, tree.odm_textured_model_obj) }) for r in runs: odm_georeferencing_model_obj_geo = os.path.join( r['texturing_dir'], tree.odm_georeferencing_model_obj_geo) odm_georeferencing_log = os.path.join(r['georeferencing_dir'], tree.odm_georeferencing_log) odm_georeferencing_transform_file = os.path.join( r['georeferencing_dir'], tree.odm_georeferencing_transform_file) odm_georeferencing_model_txt_geo_file = os.path.join( r['georeferencing_dir'], tree.odm_georeferencing_model_txt_geo) if not io.file_exists(odm_georeferencing_model_obj_geo) or \ not io.file_exists(tree.odm_georeferencing_model_laz) or self.rerun(): # odm_georeference definitions kwargs = { 'bin': context.odm_modules_path, 'input_pc_file': tree.filtered_point_cloud, 'bundle': tree.opensfm_bundle, 'imgs': tree.dataset_raw, 'imgs_list': tree.opensfm_bundle_list, 'model': r['model'], 'log': odm_georeferencing_log, 'input_trans_file': tree.opensfm_transformation, 'transform_file': odm_georeferencing_transform_file, 'coords': tree.odm_georeferencing_coords, 'output_pc_file': tree.odm_georeferencing_model_laz, 'geo_sys': odm_georeferencing_model_txt_geo_file, 'model_geo': odm_georeferencing_model_obj_geo, 'verbose': verbose } if transformPointCloud: kwargs[ 'pc_params'] = '-inputPointCloudFile {input_pc_file} -outputPointCloudFile {output_pc_file}'.format( **kwargs) if reconstruction.is_georeferenced(): kwargs[ 'pc_params'] += ' -outputPointCloudSrs %s' % pipes.quote( reconstruction.georef.proj4()) else: log.ODM_WARNING( 'NO SRS: The output point cloud will not have a SRS.' ) else: kwargs['pc_params'] = '' if io.file_exists( tree.opensfm_transformation) and io.file_exists( tree.odm_georeferencing_coords): log.ODM_INFO( 'Running georeferencing with OpenSfM transformation matrix' ) system.run( '{bin}/odm_georef -bundleFile {bundle} -inputTransformFile {input_trans_file} -inputCoordFile {coords} ' '-inputFile {model} -outputFile {model_geo} ' '{pc_params} {verbose} ' '-logFile {log} -outputTransformFile {transform_file} -georefFileOutputPath {geo_sys}' .format(**kwargs)) elif io.file_exists(tree.odm_georeferencing_coords): log.ODM_INFO( 'Running georeferencing with generated coords file.') system.run( '{bin}/odm_georef -bundleFile {bundle} -inputCoordFile {coords} ' '-inputFile {model} -outputFile {model_geo} ' '{pc_params} {verbose} ' '-logFile {log} -outputTransformFile {transform_file} -georefFileOutputPath {geo_sys}' .format(**kwargs)) else: log.ODM_WARNING( 'Georeferencing failed. Make sure your ' 'photos have geotags in the EXIF or you have ' 'provided a GCP file. ') doPointCloudGeo = False # skip the rest of the georeferencing if doPointCloudGeo: reconstruction.georef.extract_offsets( odm_georeferencing_model_txt_geo_file) # XYZ point cloud output if args.pc_csv: log.ODM_INFO( "Creating geo-referenced CSV file (XYZ format)") system.run( "pdal translate -i \"{}\" " "-o \"{}\" " "--writers.text.format=csv " "--writers.text.order=\"X,Y,Z\" " "--writers.text.keep_unspecified=false ".format( tree.odm_georeferencing_model_laz, tree.odm_georeferencing_xyz_file)) # LAS point cloud output if args.pc_las: log.ODM_INFO("Creating geo-referenced LAS file") system.run("pdal translate -i \"{}\" " "-o \"{}\" ".format( tree.odm_georeferencing_model_laz, tree.odm_georeferencing_model_las)) # EPT point cloud output if args.pc_ept: log.ODM_INFO( "Creating geo-referenced Entwine Point Tile output" ) entwine.build([tree.odm_georeferencing_model_laz], tree.entwine_pointcloud, max_concurrency=args.max_concurrency, rerun=self.rerun()) if args.crop > 0: log.ODM_INFO( "Calculating cropping area and generating bounds shapefile from point cloud" ) cropper = Cropper(tree.odm_georeferencing, 'odm_georeferenced_model') decimation_step = 40 if args.fast_orthophoto or args.use_opensfm_dense else 90 # More aggressive decimation for large datasets if not args.fast_orthophoto: decimation_step *= int( len(reconstruction.photos) / 1000) + 1 cropper.create_bounds_gpkg( tree.odm_georeferencing_model_laz, args.crop, decimation_step=decimation_step) # Do not execute a second time, since # We might be doing georeferencing for # multiple models (3D, 2.5D, ...) doPointCloudGeo = False transformPointCloud = False else: log.ODM_WARNING('Found a valid georeferenced model in: %s' % tree.odm_georeferencing_model_laz)