Example #1
0
 def test_identity(self):
     n_qubits = 5
     transmed_i = reverse_jordan_wigner(self.identity, n_qubits)
     expected_i = FermionOperator(())
     self.assertTrue(transmed_i == expected_i)
     retransmed_i = jordan_wigner(transmed_i)
     self.assertTrue(self.identity == retransmed_i)
Example #2
0
 def test_jw_convention(self):
     """Test that the Jordan-Wigner convention places the Z-string on
     lower indices."""
     qubit_op = QubitOperator('Z0 X1')
     transformed_op = reverse_jordan_wigner(qubit_op)
     expected_op = FermionOperator('1^')
     expected_op += FermionOperator('1')
     self.assertTrue(transformed_op == expected_op)
Example #3
0
 def test_get_interaction_operator_identity(self):
     interaction_operator = InteractionOperator(-2j, self.one_body,
                                                self.two_body)
     qubit_operator = jordan_wigner(interaction_operator)
     self.assertTrue(qubit_operator == -2j * QubitOperator(()))
     self.assertEqual(
         interaction_operator,
         get_interaction_operator(reverse_jordan_wigner(qubit_operator),
                                  self.n_qubits))
Example #4
0
    def test_zero(self):
        n_qubits = 5
        transmed_i = reverse_jordan_wigner(QubitOperator(), n_qubits)
        expected_i = FermionOperator()
        self.assertTrue(transmed_i == expected_i)

        retransmed_i = jordan_wigner(transmed_i)
        expected_i = QubitOperator()
        self.assertTrue(expected_i == retransmed_i)
Example #5
0
    def test_jordan_wigner_twobody_interaction_op_allunique(self):
        test_op = FermionOperator('1^ 2^ 3 4')
        test_op += hermitian_conjugated(test_op)

        retransformed_test_op = reverse_jordan_wigner(
            jordan_wigner(get_interaction_operator(test_op)))

        self.assertTrue(
            normal_ordered(retransformed_test_op) == normal_ordered(test_op))
Example #6
0
    def test_z(self):
        pauli_z = QubitOperator(((2, 'Z'), ))
        transmed_z = reverse_jordan_wigner(pauli_z)

        expected = (FermionOperator(()) + FermionOperator(
            ((2, 1), (2, 0)), -2.))
        self.assertTrue(transmed_z == expected)

        retransmed_z = jordan_wigner(transmed_z)
        self.assertTrue(pauli_z == retransmed_z)
Example #7
0
    def test_jordan_wigner_interaction_op_with_zero_term(self):
        test_op = FermionOperator('1^ 2^ 3 4')
        test_op += hermitian_conjugated(test_op)

        interaction_op = get_interaction_operator(test_op)
        interaction_op.constant = 0.0

        retransformed_test_op = reverse_jordan_wigner(
            jordan_wigner(interaction_op))

        self.assertEqual(normal_ordered(retransformed_test_op),
                         normal_ordered(test_op))
    def get_qubit_expectations(self, qubit_operator):
        """Return expectations of QubitOperator in new QubitOperator.

        Args:
            qubit_operator: QubitOperator instance to be evaluated on
                this InteractionRDM.

        Returns:
            QubitOperator: QubitOperator with coefficients
            corresponding to expectation values of those operators.

        Raises:
            InteractionRDMError: Observable not contained in 1-RDM or 2-RDM.
        """
        # Importing here instead of head of file to prevent circulars
        from openfermion.transforms.opconversions import (
            reverse_jordan_wigner, normal_ordered)
        qubit_operator_expectations = copy.deepcopy(qubit_operator)
        for qubit_term in qubit_operator_expectations.terms:
            expectation = 0.

            # Map qubits back to fermions.
            reversed_fermion_operators = reverse_jordan_wigner(
                QubitOperator(qubit_term))
            reversed_fermion_operators = normal_ordered(
                reversed_fermion_operators)

            # Loop through fermion terms.
            for fermion_term in reversed_fermion_operators.terms:
                coefficient = reversed_fermion_operators.terms[fermion_term]

                # Handle molecular term.
                if FermionOperator(
                        fermion_term).is_two_body_number_conserving():
                    if not fermion_term:
                        expectation += coefficient
                    else:
                        indices = [operator[0] for operator in fermion_term]
                        if len(indices) == 2:
                            # One-body term
                            indices = tuple(zip(indices, (1, 0)))
                        else:
                            # Two-body term
                            indices = tuple(zip(indices, (1, 1, 0, 0)))
                        rdm_element = self[indices]
                        expectation += rdm_element * coefficient

                # Handle non-molecular terms.
                elif len(fermion_term) > 4:
                    raise InteractionRDMError('Observable not contained '
                                              'in 1-RDM or 2-RDM.')
            qubit_operator_expectations.terms[qubit_term] = expectation
        return qubit_operator_expectations
Example #9
0
    def test_yy(self):
        yy = QubitOperator(((2, 'Y'), (3, 'Y')), 2.)
        transmed_yy = reverse_jordan_wigner(yy)
        retransmed_yy = jordan_wigner(transmed_yy)

        expected1 = -(FermionOperator(((2, 1), ), 2.) + FermionOperator(
            ((2, 0), ), 2.))
        expected2 = (FermionOperator(((3, 1), )) - FermionOperator(((3, 0), )))
        expected = expected1 * expected2

        self.assertTrue(yy == retransmed_yy)
        self.assertTrue(
            normal_ordered(transmed_yy) == normal_ordered(expected))
Example #10
0
    def test_xy(self):
        xy = QubitOperator(((4, 'X'), (5, 'Y')), -2.j)
        transmed_xy = reverse_jordan_wigner(xy)
        retransmed_xy = jordan_wigner(transmed_xy)

        expected1 = -2j * (FermionOperator(((4, 1), ), 1j) - FermionOperator(
            ((4, 0), ), 1j))
        expected2 = (FermionOperator(((5, 1), )) - FermionOperator(((5, 0), )))
        expected = expected1 * expected2

        self.assertTrue(xy == retransmed_xy)
        self.assertTrue(
            normal_ordered(transmed_xy) == normal_ordered(expected))
Example #11
0
    def test_yx(self):
        yx = QubitOperator(((0, 'Y'), (1, 'X')), -0.5)
        transmed_yx = reverse_jordan_wigner(yx)
        retransmed_yx = jordan_wigner(transmed_yx)

        expected1 = 1j * (FermionOperator(((0, 1), )) + FermionOperator(
            ((0, 0), )))
        expected2 = -0.5 * (FermionOperator(((1, 1), )) + FermionOperator(
            ((1, 0), )))
        expected = expected1 * expected2

        self.assertTrue(yx == retransmed_yx)
        self.assertTrue(
            normal_ordered(transmed_yx) == normal_ordered(expected))
Example #12
0
    def test_xx(self):
        xx = QubitOperator(((3, 'X'), (4, 'X')), 2.)
        transmed_xx = reverse_jordan_wigner(xx)
        retransmed_xx = jordan_wigner(transmed_xx)

        expected1 = (FermionOperator(((3, 1), ), 2.) - FermionOperator(
            ((3, 0), ), 2.))
        expected2 = (FermionOperator(((4, 1), ), 1.) + FermionOperator(
            ((4, 0), ), 1.))
        expected = expected1 * expected2

        self.assertTrue(xx == retransmed_xx)
        self.assertTrue(
            normal_ordered(transmed_xx) == normal_ordered(expected))
 def test_reverse_jordan_wigner(self):
     fermion_hamiltonian = reverse_jordan_wigner(self.qubit_hamiltonian)
     fermion_hamiltonian = normal_ordered(fermion_hamiltonian)
     self.assertTrue(self.fermion_hamiltonian == fermion_hamiltonian)
Example #14
0
 def test_term(self):
     transmed_term = reverse_jordan_wigner(self.term)
     retransmed_term = jordan_wigner(transmed_term)
     self.assertTrue(self.term == retransmed_term)
Example #15
0
 def test_yzxz(self):
     yzxz = QubitOperator(((0, 'Y'), (1, 'Z'), (2, 'X'), (3, 'Z')))
     transmed_yzxz = reverse_jordan_wigner(yzxz)
     retransmed_yzxz = jordan_wigner(transmed_yzxz)
     self.assertTrue(yzxz == retransmed_yzxz)
Example #16
0
 def test_reverse_jordan_wigner(self):
     transmed_operator = reverse_jordan_wigner(self.qubit_operator)
     retransmed_operator = jordan_wigner(transmed_operator)
     self.assertTrue(self.qubit_operator == retransmed_operator)
Example #17
0
    def test_reverse_jw_linearity(self):
        term1 = QubitOperator(((0, 'X'), (1, 'Y')), -0.5)
        term2 = QubitOperator(((0, 'Y'), (1, 'X'), (2, 'Y'), (3, 'Y')), -1j)

        op12 = reverse_jordan_wigner(term1) - reverse_jordan_wigner(term2)
        self.assertTrue(op12 == reverse_jordan_wigner(term1 - term2))
Example #18
0
 def test_bad_type(self):
     with self.assertRaises(TypeError):
         reverse_jordan_wigner(3)
Example #19
0
 def test_y(self):
     pauli_y = QubitOperator(((2, 'Y'), ))
     transmed_y = reverse_jordan_wigner(pauli_y)
     retransmed_y = jordan_wigner(transmed_y)
     self.assertTrue(pauli_y == retransmed_y)
Example #20
0
 def test_x(self):
     pauli_x = QubitOperator(((2, 'X'), ))
     transmed_x = reverse_jordan_wigner(pauli_x)
     retransmed_x = jordan_wigner(transmed_x)
     self.assertTrue(pauli_x == retransmed_x)
Example #21
0
 def test_identity_jwterm(self):
     self.assertTrue(
         FermionOperator(()) == reverse_jordan_wigner(QubitOperator(())))
Example #22
0
    def test_all(self):

        # Test reverse Jordan-Wigner.
        fermion_hamiltonian = reverse_jordan_wigner(self.qubit_hamiltonian)
        fermion_hamiltonian = normal_ordered(fermion_hamiltonian)
        self.assertTrue(self.fermion_hamiltonian == fermion_hamiltonian)

        # Test mapping to interaction operator.
        fermion_hamiltonian = get_fermion_operator(self.molecular_hamiltonian)
        fermion_hamiltonian = normal_ordered(fermion_hamiltonian)
        self.assertTrue(self.fermion_hamiltonian == fermion_hamiltonian)

        # Test RDM energy.
        fci_rdm_energy = self.nuclear_repulsion
        fci_rdm_energy += numpy.sum(self.fci_rdm.one_body_tensor *
                                    self.one_body)
        fci_rdm_energy += numpy.sum(self.fci_rdm.two_body_tensor *
                                    self.two_body)
        self.assertAlmostEqual(fci_rdm_energy, self.molecule.fci_energy)

        # Confirm expectation on qubit Hamiltonian using reverse JW matches.
        qubit_rdm = self.fci_rdm.get_qubit_expectations(self.qubit_hamiltonian)
        qubit_energy = 0.0
        for term, coefficient in qubit_rdm.terms.items():
            qubit_energy += coefficient * self.qubit_hamiltonian.terms[term]
        self.assertAlmostEqual(qubit_energy, self.molecule.fci_energy)

        # Confirm fermionic RDMs can be built from measured qubit RDMs.
        new_fermi_rdm = get_interaction_rdm(qubit_rdm)
        new_fermi_rdm.expectation(self.molecular_hamiltonian)
        self.assertAlmostEqual(fci_rdm_energy, self.molecule.fci_energy)

        # Test sparse matrices.
        energy, wavefunction = get_ground_state(self.hamiltonian_matrix)
        self.assertAlmostEqual(energy, self.molecule.fci_energy)
        expected_energy = expectation(self.hamiltonian_matrix, wavefunction)
        self.assertAlmostEqual(expected_energy, energy)

        # Make sure you can reproduce Hartree-Fock energy.
        hf_state = jw_hartree_fock_state(self.molecule.n_electrons,
                                         count_qubits(self.qubit_hamiltonian))
        hf_density = get_density_matrix([hf_state], [1.])
        expected_hf_density_energy = expectation(self.hamiltonian_matrix,
                                                 hf_density)
        expected_hf_energy = expectation(self.hamiltonian_matrix, hf_state)
        self.assertAlmostEqual(expected_hf_energy, self.molecule.hf_energy)
        self.assertAlmostEqual(expected_hf_density_energy,
                               self.molecule.hf_energy)

        # Check that frozen core result matches frozen core FCI from psi4.
        # Recore frozen core result from external calculation.
        self.frozen_core_fci_energy = -7.8807607374168
        no_core_fci_energy = numpy.linalg.eigh(
            self.hamiltonian_matrix_no_core.toarray())[0][0]
        self.assertAlmostEqual(no_core_fci_energy, self.frozen_core_fci_energy)

        # Check that the freeze_orbitals function has the same effect as the
        # as the occupied_indices option of get_molecular_hamiltonian.
        frozen_hamiltonian = freeze_orbitals(
            get_fermion_operator(self.molecular_hamiltonian), [0, 1])
        self.assertTrue(frozen_hamiltonian == get_fermion_operator(
            self.molecular_hamiltonian_no_core))
Example #23
0
 def test_reverse_jw_too_few_n_qubits(self):
     with self.assertRaises(ValueError):
         reverse_jordan_wigner(self.operator_a, 0)