Example #1
0
    def test_unequal_training_outputs(self):
        mm = MetaModelUnStructured()
        mm.add_input('x', 0.)
        mm.add_input('y', 0.)
        mm.add_output('f', 0.)
        mm.default_surrogate = FloatKrigingSurrogate()

        prob = Problem()
        prob.model.add_subsystem('mm', mm)
        prob.setup(check=False)

        mm.metadata['train:x'] = [1.0, 1.0, 1.0, 1.0]
        mm.metadata['train:y'] = [1.0, 2.0, 3.0, 4.0]
        mm.metadata['train:f'] = [1.0, 1.0]

        prob['mm.x'] = 1.0
        prob['mm.y'] = 1.0

        with self.assertRaises(RuntimeError) as cm:
            prob.run_model()

        expected = ("MetaModelUnStructured: Each variable must have the same number"
                    " of training points. Expected 4 but found"
                    " 2 points for 'f'.")
        self.assertEqual(str(cm.exception), expected)
Example #2
0
    def test_array_inputs(self):
        mm = MetaModelUnStructured()
        mm.add_input('x', np.zeros((2,2)))
        mm.add_output('y1', 0.)
        mm.add_output('y2', 0.)
        mm.default_surrogate = FloatKrigingSurrogate()

        prob = Problem()
        prob.model.add_subsystem('mm', mm)
        prob.setup(check=False)

        mm.metadata['train:x'] = [
            [[1.0, 1.0], [1.0, 1.0]],
            [[2.0, 1.0], [1.0, 1.0]],
            [[1.0, 2.0], [1.0, 1.0]],
            [[1.0, 1.0], [2.0, 1.0]],
            [[1.0, 1.0], [1.0, 2.0]]
        ]
        mm.metadata['train:y1'] = [3.0, 2.0, 1.0, 6.0, -2.0]
        mm.metadata['train:y2'] = [1.0, 4.0, 7.0, -3.0, 3.0]

        prob['mm.x'] = [[1.0, 2.0], [1.0, 1.0]]
        prob.run_model()

        assert_rel_error(self, prob['mm.y1'], 1.0, .00001)
        assert_rel_error(self, prob['mm.y2'], 7.0, .00001)
Example #3
0
    def test_derivatives(self):
        mm = MetaModelUnStructured()
        mm.add_input('x', 0.)
        mm.add_output('f', 0.)
        mm.default_surrogate = FloatKrigingSurrogate()

        prob = Problem()
        prob.model.add_subsystem('p', IndepVarComp('x', 0.),
                                 promotes_outputs=['x'])
        prob.model.add_subsystem('mm', mm,
                                 promotes_inputs=['x'])
        prob.setup()

        mm.metadata['train:x'] = [0., .25, .5, .75, 1.]
        mm.metadata['train:f'] = [1., .75, .5, .25, 0.]

        prob['x'] = 0.125
        prob.run_model()

        data = prob.check_partials()

        Jf = data['mm'][('f', 'x')]['J_fwd']
        Jr = data['mm'][('f', 'x')]['J_rev']

        assert_rel_error(self, Jf[0][0], -1., 1.e-3)
        assert_rel_error(self, Jr[0][0], -1., 1.e-3)

        # TODO: complex step not currently supported in check_partial_derivs
        # data = prob.check_partials(global_options={'method': 'cs'})

        abs_errors = data['mm'][('f', 'x')]['abs error']
        self.assertTrue(len(abs_errors) > 0)
        for match in abs_errors:
            abs_error = float(match)
            self.assertTrue(abs_error < 1.e-6)
    def test_unequal_training_outputs(self):
        mm = MetaModelUnStructured()
        mm.add_input('x', 0.)
        mm.add_input('y', 0.)
        mm.add_output('f', 0.)
        mm.default_surrogate = FloatKrigingSurrogate()

        prob = Problem()
        prob.model.add_subsystem('mm', mm)
        prob.setup(check=False)

        mm.metadata['train:x'] = [1.0, 1.0, 1.0, 1.0]
        mm.metadata['train:y'] = [1.0, 2.0, 3.0, 4.0]
        mm.metadata['train:f'] = [1.0, 1.0]

        prob['mm.x'] = 1.0
        prob['mm.y'] = 1.0

        with self.assertRaises(RuntimeError) as cm:
            prob.run_model()

        expected = ("MetaModelUnStructured: Each variable must have the same number"
                    " of training points. Expected 4 but found"
                    " 2 points for 'f'.")
        self.assertEqual(str(cm.exception), expected)
    def test_array_inputs(self):
        mm = MetaModelUnStructured()
        mm.add_input('x', np.zeros((2,2)))
        mm.add_output('y1', 0.)
        mm.add_output('y2', 0.)
        mm.default_surrogate = FloatKrigingSurrogate()

        prob = Problem()
        prob.model.add_subsystem('mm', mm)
        prob.setup(check=False)

        mm.metadata['train:x'] = [
            [[1.0, 1.0], [1.0, 1.0]],
            [[2.0, 1.0], [1.0, 1.0]],
            [[1.0, 2.0], [1.0, 1.0]],
            [[1.0, 1.0], [2.0, 1.0]],
            [[1.0, 1.0], [1.0, 2.0]]
        ]
        mm.metadata['train:y1'] = [3.0, 2.0, 1.0, 6.0, -2.0]
        mm.metadata['train:y2'] = [1.0, 4.0, 7.0, -3.0, 3.0]

        prob['mm.x'] = [[1.0, 2.0], [1.0, 1.0]]
        prob.run_model()

        assert_rel_error(self, prob['mm.y1'], 1.0, .00001)
        assert_rel_error(self, prob['mm.y2'], 7.0, .00001)
    def test_metamodel_feature(self):
        # create a MetaModelUnStructured, specifying surrogates for the outputs
        import numpy as np

        from openmdao.api import Problem, MetaModelUnStructured, FloatKrigingSurrogate

        trig = MetaModelUnStructured()

        x_train = np.linspace(0,10,20)

        trig.add_input('x', 0., training_data=x_train)
        trig.add_output('sin_x', 0., surrogate=FloatKrigingSurrogate(),
                        training_data=.5*np.sin(x_train))
        trig.add_output('cos_x', 0., training_data=.5*np.cos(x_train))

        trig.default_surrogate = FloatKrigingSurrogate()



        # add it to a Problem, run and check the predicted values
        prob = Problem()
        prob.model.add_subsystem('trig', trig)
        prob.setup(check=False)

        prob['trig.x'] = 2.1
        prob.run_model()

        assert_rel_error(self, prob['trig.sin_x'], .5*np.sin(prob['trig.x']), 1e-4)
        assert_rel_error(self, prob['trig.cos_x'], .5*np.cos(prob['trig.x']), 1e-4)
Example #7
0
    def test_metamodel_feature2d(self):
        # similar to previous example, but output is 2d
        import numpy as np

        from openmdao.api import Problem, MetaModelUnStructured, FloatKrigingSurrogate

        # create a MetaModelUnStructured that predicts sine and cosine as an array
        trig = MetaModelUnStructured(default_surrogate=FloatKrigingSurrogate())
        trig.add_input('x', 0)
        trig.add_output('y', np.zeros(2))

        # add it to a Problem
        prob = Problem()
        prob.model.add_subsystem('trig', trig)
        prob.setup(check=False)

        # provide training data
        trig.metadata['train:x'] = np.linspace(0, 10, 20)
        trig.metadata['train:y'] = np.column_stack((
            .5*np.sin(trig.metadata['train:x']),
            .5*np.cos(trig.metadata['train:x'])
        ))

        # train the surrogate and check predicted value
        prob['trig.x'] = 2.1
        prob.run_model()
        assert_rel_error(self, prob['trig.y'],
                         np.append(
                            .5*np.sin(prob['trig.x']),
                            .5*np.cos(prob['trig.x'])
                         ),
                         1e-4)
    def test_derivatives(self):
        mm = MetaModelUnStructured()
        mm.add_input('x', 0.)
        mm.add_output('f', 0.)
        mm.default_surrogate = FloatKrigingSurrogate()

        prob = Problem()
        prob.model.add_subsystem('p', IndepVarComp('x', 0.),
                                 promotes_outputs=['x'])
        prob.model.add_subsystem('mm', mm,
                                 promotes_inputs=['x'])
        prob.setup()

        mm.metadata['train:x'] = [0., .25, .5, .75, 1.]
        mm.metadata['train:f'] = [1., .75, .5, .25, 0.]

        prob['x'] = 0.125
        prob.run_model()

        data = prob.check_partials()

        Jf = data['mm'][('f', 'x')]['J_fwd']
        Jr = data['mm'][('f', 'x')]['J_rev']

        assert_rel_error(self, Jf[0][0], -1., 1.e-3)
        assert_rel_error(self, Jr[0][0], -1., 1.e-3)

        # TODO: complex step not currently supported in check_partial_derivs
        # data = prob.check_partials(global_options={'method': 'cs'})

        abs_errors = data['mm'][('f', 'x')]['abs error']
        self.assertTrue(len(abs_errors) > 0)
        for match in abs_errors:
            abs_error = float(match)
            self.assertTrue(abs_error < 1.e-6)
Example #9
0
    def test_metamodel_feature_vector(self):
        # Like simple sine example, but with input of length n instead of scalar
        # The expected behavior is that the output is also of length n, with
        # each one being an independent prediction.
        # Its as if you stamped out n copies of metamodel, ran n scalars
        # through its input, then muxed all those outputs into one contiguous
        # array but you skip all the n-copies thing and do it all as an array
        import numpy as np

        from openmdao.api import Problem, MetaModelUnStructured, FloatKrigingSurrogate

        size = 3

        # create a vectorized MetaModelUnStructured for sine
        trig = MetaModelUnStructured(vectorize=size, default_surrogate=FloatKrigingSurrogate())
        trig.add_input('x', np.zeros(size))
        trig.add_output('y', np.zeros(size))

        # add it to a Problem
        prob = Problem()
        prob.model.add_subsystem('trig', trig)
        prob.setup(check=False)

        # provide training data
        trig.metadata['train:x'] = np.linspace(0, 10, 20)
        trig.metadata['train:y'] = .5*np.sin(trig.metadata['train:x'])

        # train the surrogate and check predicted value
        prob['trig.x'] = np.array([2.1, 3.2, 4.3])
        prob.run_model()
        assert_rel_error(self, prob['trig.y'],
                         np.array(.5*np.sin(prob['trig.x'])),
                         1e-4)
Example #10
0
    def test_metamodel_feature_vector2d(self):
        # similar to previous example, but processes 3 inputs/outputs at a time
        import numpy as np

        from openmdao.api import Problem, MetaModelUnStructured, FloatKrigingSurrogate

        size = 3

        # create a vectorized MetaModelUnStructured for sine and cosine
        trig = MetaModelUnStructured(vectorize=size, default_surrogate=FloatKrigingSurrogate())
        trig.add_input('x', np.zeros(size))
        trig.add_output('y', np.zeros((size, 2)))

        # add it to a Problem
        prob = Problem()
        prob.model.add_subsystem('trig', trig)
        prob.setup(check=False)

        # provide training data
        trig.metadata['train:x'] = np.linspace(0, 10, 20)
        trig.metadata['train:y'] = np.column_stack((
            .5*np.sin(trig.metadata['train:x']),
            .5*np.cos(trig.metadata['train:x'])
        ))

        # train the surrogate and check predicted value
        prob['trig.x'] = np.array([2.1, 3.2, 4.3])
        prob.run_model()
        assert_rel_error(self, prob['trig.y'],
                         np.column_stack((
                             .5*np.sin(prob['trig.x']),
                             .5*np.cos(prob['trig.x'])
                         )),
                         1e-4)
Example #11
0
    def test_sin_metamodel(self):
        # create a MetaModelUnStructured for sine and add it to a Problem
        sin_mm = MetaModelUnStructured()
        sin_mm.add_input('x', 0.)
        sin_mm.add_output('f_x', 0.)

        prob = Problem()
        prob.model.add_subsystem('sin_mm', sin_mm)

        # check that missing surrogate is detected in check_config
        testlogger = TestLogger()
        prob.setup(check=True, logger=testlogger)

        # Conclude setup but don't run model.
        prob.final_setup()

        msg = ("No default surrogate model is defined and the "
               "following outputs do not have a surrogate model:\n"
               "['f_x']\n"
               "Either specify a default_surrogate, or specify a "
               "surrogate model for all outputs.")
        self.assertEqual(len(testlogger.get('error')), 1)
        self.assertTrue(msg in testlogger.get('error')[0])

        # check that output with no specified surrogate gets the default
        sin_mm.default_surrogate = FloatKrigingSurrogate()
        prob.setup(check=False)
        surrogate = sin_mm._metadata('f_x').get('surrogate')
        self.assertTrue(isinstance(surrogate, FloatKrigingSurrogate),
                        'sin_mm.f_x should get the default surrogate')

        # check error message when no training data is provided
        with self.assertRaises(RuntimeError) as cm:
            prob.run_model()

        msg = (
            "MetaModelUnStructured: The following training data sets must be "
            "provided as metadata for sin_mm: ['train:x', 'train:f_x']")
        self.assertEqual(str(cm.exception), msg)

        # train the surrogate and check predicted value
        sin_mm.metadata['train:x'] = np.linspace(0, 10, 20)
        sin_mm.metadata['train:f_x'] = .5 * np.sin(sin_mm.metadata['train:x'])

        prob['sin_mm.x'] = 2.1

        prob.run_model()

        assert_rel_error(self, prob['sin_mm.f_x'],
                         .5 * np.sin(prob['sin_mm.x']), 1e-4)
    def test_metamodel_feature_vector2d(self):
        # similar to previous example, but processes 3 inputs/outputs at a time
        import numpy as np

        from openmdao.api import Problem, MetaModelUnStructured, FloatKrigingSurrogate

        size = 3

        # create a vectorized MetaModelUnStructured for sine and cosine
        trig = MetaModelUnStructured(vectorize=size, default_surrogate=FloatKrigingSurrogate())
        trig.add_input('x', np.zeros(size))
        trig.add_output('y', np.zeros((size, 2)))

        # add it to a Problem
        prob = Problem()
        prob.model.add_subsystem('trig', trig)
        prob.setup(check=False)

        # provide training data
        trig.metadata['train:x'] = np.linspace(0, 10, 20)
        trig.metadata['train:y'] = np.column_stack((
            .5*np.sin(trig.metadata['train:x']),
            .5*np.cos(trig.metadata['train:x'])
        ))

        # train the surrogate and check predicted value
        prob['trig.x'] = np.array([2.1, 3.2, 4.3])
        prob.run_model()
        assert_rel_error(self, prob['trig.y'],
                         np.column_stack((
                             .5*np.sin(prob['trig.x']),
                             .5*np.cos(prob['trig.x'])
                         )),
                         1e-4)
    def test_metamodel_feature_vector(self):
        # Like simple sine example, but with input of length n instead of scalar
        # The expected behavior is that the output is also of length n, with
        # each one being an independent prediction.
        # Its as if you stamped out n copies of metamodel, ran n scalars
        # through its input, then muxed all those outputs into one contiguous
        # array but you skip all the n-copies thing and do it all as an array
        import numpy as np

        from openmdao.api import Problem, MetaModelUnStructured, FloatKrigingSurrogate

        size = 3

        # create a vectorized MetaModelUnStructured for sine
        trig = MetaModelUnStructured(vectorize=size, default_surrogate=FloatKrigingSurrogate())
        trig.add_input('x', np.zeros(size))
        trig.add_output('y', np.zeros(size))

        # add it to a Problem
        prob = Problem()
        prob.model.add_subsystem('trig', trig)
        prob.setup(check=False)

        # provide training data
        trig.metadata['train:x'] = np.linspace(0, 10, 20)
        trig.metadata['train:y'] = .5*np.sin(trig.metadata['train:x'])

        # train the surrogate and check predicted value
        prob['trig.x'] = np.array([2.1, 3.2, 4.3])
        prob.run_model()
        assert_rel_error(self, prob['trig.y'],
                         np.array(.5*np.sin(prob['trig.x'])),
                         1e-4)
    def test_metamodel_feature2d(self):
        # similar to previous example, but output is 2d
        import numpy as np

        from openmdao.api import Problem, MetaModelUnStructured, FloatKrigingSurrogate

        # create a MetaModelUnStructured that predicts sine and cosine as an array
        trig = MetaModelUnStructured(default_surrogate=FloatKrigingSurrogate())
        trig.add_input('x', 0)
        trig.add_output('y', np.zeros(2))

        # add it to a Problem
        prob = Problem()
        prob.model.add_subsystem('trig', trig)
        prob.setup(check=False)

        # provide training data
        trig.metadata['train:x'] = np.linspace(0, 10, 20)
        trig.metadata['train:y'] = np.column_stack((
            .5*np.sin(trig.metadata['train:x']),
            .5*np.cos(trig.metadata['train:x'])
        ))

        # train the surrogate and check predicted value
        prob['trig.x'] = 2.1
        prob.run_model()
        assert_rel_error(self, prob['trig.y'],
                         np.append(
                            .5*np.sin(prob['trig.x']),
                            .5*np.cos(prob['trig.x'])
                         ),
                         1e-4)
    def test_sin_metamodel(self):
        # create a MetaModelUnStructured for sine and add it to a Problem
        sin_mm = MetaModelUnStructured()
        sin_mm.add_input('x', 0.)
        sin_mm.add_output('f_x', 0.)

        prob = Problem()
        prob.model.add_subsystem('sin_mm', sin_mm)

        # check that missing surrogate is detected in check_config
        testlogger = TestLogger()
        prob.setup(check=True, logger=testlogger)

        # Conclude setup but don't run model.
        prob.final_setup()

        msg = ("No default surrogate model is defined and the "
               "following outputs do not have a surrogate model:\n"
               "['f_x']\n"
               "Either specify a default_surrogate, or specify a "
               "surrogate model for all outputs.")
        self.assertEqual(len(testlogger.get('error')), 1)
        self.assertTrue(msg in testlogger.get('error')[0])

        # check that output with no specified surrogate gets the default
        sin_mm.default_surrogate = FloatKrigingSurrogate()
        prob.setup(check=False)
        surrogate = sin_mm._metadata('f_x').get('surrogate')
        self.assertTrue(isinstance(surrogate, FloatKrigingSurrogate),
                        'sin_mm.f_x should get the default surrogate')

        # check error message when no training data is provided
        with self.assertRaises(RuntimeError) as cm:
            prob.run_model()

        msg = ("MetaModelUnStructured: The following training data sets must be "
               "provided as metadata for sin_mm: ['train:x', 'train:f_x']")
        self.assertEqual(str(cm.exception), msg)

        # train the surrogate and check predicted value
        sin_mm.metadata['train:x'] = np.linspace(0,10,20)
        sin_mm.metadata['train:f_x'] = .5*np.sin(sin_mm.metadata['train:x'])

        prob['sin_mm.x'] = 2.1

        prob.run_model()

        assert_rel_error(self, prob['sin_mm.f_x'], .5*np.sin(prob['sin_mm.x']), 1e-4)
Example #16
0
    def test_sin_metamodel_rmse(self):
        # create MetaModelUnStructured with Kriging, using the rmse option
        sin_mm = MetaModelUnStructured()
        sin_mm.add_input('x', 0.)
        sin_mm.add_output('f_x', 0.)
        sin_mm.default_surrogate = KrigingSurrogate(eval_rmse=True)

        # add it to a Problem
        prob = Problem()
        prob.model.add_subsystem('sin_mm', sin_mm)
        prob.setup(check=False)

        # train the surrogate and check predicted value
        sin_mm.metadata['train:x'] = np.linspace(0,10,20)
        sin_mm.metadata['train:f_x'] = np.sin(sin_mm.metadata['train:x'])

        prob['sin_mm.x'] = 2.1

        prob.run_model()

        assert_rel_error(self, prob['sin_mm.f_x'], np.sin(2.1), 1e-4) # mean
        self.assertTrue(self, sin_mm._metadata('f_x')['rmse'] < 1e-5) # std deviation
    def test_metamodel_vector_errors(self):
        # invalid values for vectorize argument. Bad.
        for bad_value in [True, -1, 0, 1, 1.5]:
            with self.assertRaises(RuntimeError) as cm:
                MetaModelUnStructured(vectorize=True)
                self.assertEqual(str(cm.exception),
                                 "Metamodel: The value of the 'vectorize' "
                                 "argument must be an integer greater than "
                                 "one, found '%s'." % str(bad_value))

        # first dimension of all inputs/outputs must be 3
        mm = MetaModelUnStructured(vectorize=3)

        with self.assertRaises(RuntimeError) as cm:
            mm.add_input('x', np.zeros(2))
        self.assertEqual(str(cm.exception),
                         "Metamodel: First dimension of input 'x' must be 3")

        with self.assertRaises(RuntimeError) as cm:
            mm.add_output('y', np.zeros(4))
        self.assertEqual(str(cm.exception),
                         "Metamodel: First dimension of output 'y' must be 3")
    def test_sin_metamodel_rmse(self):
        # create MetaModelUnStructured with Kriging, using the rmse option
        sin_mm = MetaModelUnStructured()
        sin_mm.add_input('x', 0.)
        sin_mm.add_output('f_x', 0.)
        sin_mm.default_surrogate = KrigingSurrogate(eval_rmse=True)

        # add it to a Problem
        prob = Problem()
        prob.model.add_subsystem('sin_mm', sin_mm)
        prob.setup(check=False)

        # train the surrogate and check predicted value
        sin_mm.metadata['train:x'] = np.linspace(0,10,20)
        sin_mm.metadata['train:f_x'] = np.sin(sin_mm.metadata['train:x'])

        prob['sin_mm.x'] = 2.1

        prob.run_model()

        assert_rel_error(self, prob['sin_mm.f_x'], np.sin(2.1), 1e-4) # mean
        self.assertTrue(self, sin_mm._metadata('f_x')['rmse'] < 1e-5) # std deviation
Example #19
0
    def test_sin_metamodel_preset_data(self):
        # preset training data
        x = np.linspace(0, 10, 200)
        f_x = .5 * np.sin(x)

        # create a MetaModelUnStructured for Sin and add it to a Problem
        sin_mm = MetaModelUnStructured()
        sin_mm.add_input('x', 0., training_data=np.linspace(0, 10, 200))
        sin_mm.add_output('f_x', 0., training_data=f_x)

        prob = Problem()
        prob.model.add_subsystem('sin_mm', sin_mm)

        # check that missing surrogate is detected in check_setup
        testlogger = TestLogger()
        prob.setup(check=True, logger=testlogger)

        # Conclude setup but don't run model.
        prob.final_setup()

        msg = ("No default surrogate model is defined and the "
               "following outputs do not have a surrogate model:\n"
               "['f_x']\n"
               "Either specify a default_surrogate, or specify a "
               "surrogate model for all outputs.")
        self.assertEqual(len(testlogger.get('error')), 1)
        self.assertTrue(msg in testlogger.get('error')[0])

        # check that output with no specified surrogate gets the default
        sin_mm.default_surrogate = FloatKrigingSurrogate()
        prob.setup(check=False)

        surrogate = sin_mm._metadata('f_x').get('surrogate')
        self.assertTrue(isinstance(surrogate, FloatKrigingSurrogate),
                        'sin_mm.f_x should get the default surrogate')

        prob['sin_mm.x'] = 2.22

        prob.run_model()

        assert_rel_error(self, prob['sin_mm.f_x'],
                         .5 * np.sin(prob['sin_mm.x']), 1e-4)
    def test_sin_metamodel_preset_data(self):
        # preset training data
        x = np.linspace(0,10,200)
        f_x = .5*np.sin(x)

        # create a MetaModelUnStructured for Sin and add it to a Problem
        sin_mm = MetaModelUnStructured()
        sin_mm.add_input('x', 0., training_data = np.linspace(0,10,200))
        sin_mm.add_output('f_x', 0., training_data=f_x)

        prob = Problem()
        prob.model.add_subsystem('sin_mm', sin_mm)

        # check that missing surrogate is detected in check_setup
        testlogger = TestLogger()
        prob.setup(check=True, logger=testlogger)

        # Conclude setup but don't run model.
        prob.final_setup()

        msg = ("No default surrogate model is defined and the "
               "following outputs do not have a surrogate model:\n"
               "['f_x']\n"
               "Either specify a default_surrogate, or specify a "
               "surrogate model for all outputs.")
        self.assertEqual(len(testlogger.get('error')), 1)
        self.assertTrue(msg in testlogger.get('error')[0])

        # check that output with no specified surrogate gets the default
        sin_mm.default_surrogate = FloatKrigingSurrogate()
        prob.setup(check=False)

        surrogate = sin_mm._metadata('f_x').get('surrogate')
        self.assertTrue(isinstance(surrogate, FloatKrigingSurrogate),
                        'sin_mm.f_x should get the default surrogate')

        prob['sin_mm.x'] = 2.22

        prob.run_model()

        assert_rel_error(self, prob['sin_mm.f_x'], .5*np.sin(prob['sin_mm.x']), 1e-4)
Example #21
0
    def test_metamodel_vector_errors(self):
        # invalid values for vectorize argument. Bad.
        for bad_value in [True, -1, 0, 1, 1.5]:
            with self.assertRaises(RuntimeError) as cm:
                MetaModelUnStructured(vectorize=True)
                self.assertEqual(str(cm.exception),
                                 "Metamodel: The value of the 'vectorize' "
                                 "argument must be an integer greater than "
                                 "one, found '%s'." % str(bad_value))

        # first dimension of all inputs/outputs must be 3
        mm = MetaModelUnStructured(vectorize=3)

        with self.assertRaises(RuntimeError) as cm:
            mm.add_input('x', np.zeros(2))
        self.assertEqual(str(cm.exception),
                         "Metamodel: First dimension of input 'x' must be 3")

        with self.assertRaises(RuntimeError) as cm:
            mm.add_output('y', np.zeros(4))
        self.assertEqual(str(cm.exception),
                         "Metamodel: First dimension of output 'y' must be 3")
    def test_basics(self):
        # create a metamodel component
        mm = MetaModelUnStructured()

        mm.add_input('x1', 0.)
        mm.add_input('x2', 0.)

        mm.add_output('y1', 0.)
        mm.add_output('y2', 0., surrogate=FloatKrigingSurrogate())

        mm.default_surrogate = ResponseSurface()

        # add metamodel to a problem
        prob = Problem(model=Group())
        prob.model.add_subsystem('mm', mm)
        prob.setup(check=False)

        # check that surrogates were properly assigned
        surrogate = mm._metadata('y1').get('surrogate')
        self.assertTrue(isinstance(surrogate, ResponseSurface))

        surrogate = mm._metadata('y2').get('surrogate')
        self.assertTrue(isinstance(surrogate, FloatKrigingSurrogate))

        # populate training data
        mm.metadata['train:x1'] = [1.0, 2.0, 3.0]
        mm.metadata['train:x2'] = [1.0, 3.0, 4.0]
        mm.metadata['train:y1'] = [3.0, 2.0, 1.0]
        mm.metadata['train:y2'] = [1.0, 4.0, 7.0]

        # run problem for provided data point and check prediction
        prob['mm.x1'] = 2.0
        prob['mm.x2'] = 3.0

        self.assertTrue(mm.train)   # training will occur before 1st run
        prob.run_model()

        assert_rel_error(self, prob['mm.y1'], 2.0, .00001)
        assert_rel_error(self, prob['mm.y2'], 4.0, .00001)

        # run problem for interpolated data point and check prediction
        prob['mm.x1'] = 2.5
        prob['mm.x2'] = 3.5

        self.assertFalse(mm.train)  # training will not occur before 2nd run
        prob.run_model()

        assert_rel_error(self, prob['mm.y1'], 1.5934, .001)

        # change default surrogate, re-setup and check that metamodel re-trains
        mm.default_surrogate = FloatKrigingSurrogate()
        prob.setup(check=False)

        surrogate = mm._metadata('y1').get('surrogate')
        self.assertTrue(isinstance(surrogate, FloatKrigingSurrogate))

        self.assertTrue(mm.train)  # training will occur after re-setup
        mm.warm_restart = True     # use existing training data

        prob['mm.x1'] = 2.5
        prob['mm.x2'] = 3.5

        prob.run_model()
        assert_rel_error(self, prob['mm.y1'], 1.5, 1e-2)
    def test_warm_start(self):
        # create metamodel with warm_restart = True
        mm = MetaModelUnStructured()
        mm.add_input('x1', 0.)
        mm.add_input('x2', 0.)
        mm.add_output('y1', 0.)
        mm.add_output('y2', 0.)
        mm.default_surrogate = ResponseSurface()
        mm.warm_restart = True

        # add to problem
        prob = Problem()
        prob.model.add_subsystem('mm', mm)
        prob.setup(check=False)

        # provide initial training data
        mm.metadata['train:x1'] = [1.0, 3.0]
        mm.metadata['train:x2'] = [1.0, 4.0]
        mm.metadata['train:y1'] = [3.0, 1.0]
        mm.metadata['train:y2'] = [1.0, 7.0]

        # run against a data point and check result
        prob['mm.x1'] = 2.0
        prob['mm.x2'] = 3.0
        prob.run_model()

        assert_rel_error(self, prob['mm.y1'], 1.9085, .001)
        assert_rel_error(self, prob['mm.y2'], 3.9203, .001)

        # Add 3rd training point, moves the estimate for that point
        # back to where it should be.
        mm.metadata['train:x1'] = [2.0]
        mm.metadata['train:x2'] = [3.0]
        mm.metadata['train:y1'] = [2.0]
        mm.metadata['train:y2'] = [4.0]

        mm.train = True  # currently need to tell meta to re-train

        prob.run_model()
        assert_rel_error(self, prob['mm.y1'], 2.0, .00001)
        assert_rel_error(self, prob['mm.y2'], 4.0, .00001)
    def test_metamodel_feature(self):
        # create a MetaModelUnStructured, specifying surrogates for the outputs
        import numpy as np

        from openmdao.api import Problem, MetaModelUnStructured, FloatKrigingSurrogate

        trig = MetaModelUnStructured()
        trig.add_input('x', 0.)
        trig.add_output('sin_x', 0., surrogate=FloatKrigingSurrogate())
        trig.add_output('cos_x', 0.)

        trig.default_surrogate = FloatKrigingSurrogate()

        # provide training data
        trig.metadata['train:x'] = np.linspace(0,10,20)
        trig.metadata['train:sin_x'] = .5*np.sin(trig.metadata['train:x'])
        trig.metadata['train:cos_x'] = .5*np.cos(trig.metadata['train:x'])

        # add it to a Problem, run and check the predicted values
        prob = Problem()
        prob.model.add_subsystem('trig', trig)
        prob.setup(check=False)

        prob['trig.x'] = 2.1
        prob.run_model()

        assert_rel_error(self, prob['trig.sin_x'], .5*np.sin(prob['trig.x']), 1e-4)
        assert_rel_error(self, prob['trig.cos_x'], .5*np.cos(prob['trig.x']), 1e-4)
Example #25
0
    def test_basics(self):
        # create a metamodel component
        mm = MetaModelUnStructured()

        mm.add_input('x1', 0.)
        mm.add_input('x2', 0.)

        mm.add_output('y1', 0.)
        mm.add_output('y2', 0., surrogate=FloatKrigingSurrogate())

        mm.default_surrogate = ResponseSurface()

        # add metamodel to a problem
        prob = Problem(model=Group())
        prob.model.add_subsystem('mm', mm)
        prob.setup(check=False)

        # check that surrogates were properly assigned
        surrogate = mm._metadata('y1').get('surrogate')
        self.assertTrue(isinstance(surrogate, ResponseSurface))

        surrogate = mm._metadata('y2').get('surrogate')
        self.assertTrue(isinstance(surrogate, FloatKrigingSurrogate))

        # populate training data
        mm.metadata['train:x1'] = [1.0, 2.0, 3.0]
        mm.metadata['train:x2'] = [1.0, 3.0, 4.0]
        mm.metadata['train:y1'] = [3.0, 2.0, 1.0]
        mm.metadata['train:y2'] = [1.0, 4.0, 7.0]

        # run problem for provided data point and check prediction
        prob['mm.x1'] = 2.0
        prob['mm.x2'] = 3.0

        self.assertTrue(mm.train)   # training will occur before 1st run
        prob.run_model()

        assert_rel_error(self, prob['mm.y1'], 2.0, .00001)
        assert_rel_error(self, prob['mm.y2'], 4.0, .00001)

        # run problem for interpolated data point and check prediction
        prob['mm.x1'] = 2.5
        prob['mm.x2'] = 3.5

        self.assertFalse(mm.train)  # training will not occur before 2nd run
        prob.run_model()

        assert_rel_error(self, prob['mm.y1'], 1.5934, .001)

        # change default surrogate, re-setup and check that metamodel re-trains
        mm.default_surrogate = FloatKrigingSurrogate()
        prob.setup(check=False)

        surrogate = mm._metadata('y1').get('surrogate')
        self.assertTrue(isinstance(surrogate, FloatKrigingSurrogate))

        self.assertTrue(mm.train)  # training will occur after re-setup
        mm.warm_restart = True     # use existing training data

        prob['mm.x1'] = 2.5
        prob['mm.x2'] = 3.5

        prob.run_model()
        assert_rel_error(self, prob['mm.y1'], 1.5, 1e-2)
Example #26
0
    def test_warm_start(self):
        # create metamodel with warm_restart = True
        mm = MetaModelUnStructured()
        mm.add_input('x1', 0.)
        mm.add_input('x2', 0.)
        mm.add_output('y1', 0.)
        mm.add_output('y2', 0.)
        mm.default_surrogate = ResponseSurface()
        mm.warm_restart = True

        # add to problem
        prob = Problem()
        prob.model.add_subsystem('mm', mm)
        prob.setup(check=False)

        # provide initial training data
        mm.metadata['train:x1'] = [1.0, 3.0]
        mm.metadata['train:x2'] = [1.0, 4.0]
        mm.metadata['train:y1'] = [3.0, 1.0]
        mm.metadata['train:y2'] = [1.0, 7.0]

        # run against a data point and check result
        prob['mm.x1'] = 2.0
        prob['mm.x2'] = 3.0
        prob.run_model()

        assert_rel_error(self, prob['mm.y1'], 1.9085, .001)
        assert_rel_error(self, prob['mm.y2'], 3.9203, .001)

        # Add 3rd training point, moves the estimate for that point
        # back to where it should be.
        mm.metadata['train:x1'] = [2.0]
        mm.metadata['train:x2'] = [3.0]
        mm.metadata['train:y1'] = [2.0]
        mm.metadata['train:y2'] = [4.0]

        mm.train = True  # currently need to tell meta to re-train

        prob.run_model()
        assert_rel_error(self, prob['mm.y1'], 2.0, .00001)
        assert_rel_error(self, prob['mm.y2'], 4.0, .00001)