def test_array_outputs(self): meta = MetaModel() meta.add_param('x', np.zeros((2, 2))) meta.add_output('y', np.zeros(2,)) meta.default_surrogate = FloatKrigingSurrogate() prob = Problem(Group()) prob.root.add('meta', meta) prob.setup(check=False) prob['meta.train:x'] = [ [[1.0, 1.0], [1.0, 1.0]], [[2.0, 1.0], [1.0, 1.0]], [[1.0, 2.0], [1.0, 1.0]], [[1.0, 1.0], [2.0, 1.0]], [[1.0, 1.0], [1.0, 2.0]] ] prob['meta.train:y'] = [[3.0, 1.0], [2.0, 4.0], [1.0, 7.0], [6.0, -3.0], [-2.0, 3.0]] prob['meta.x'] = [[1.0, 2.0], [1.0, 1.0]] prob.run() assert_rel_error(self, prob['meta.y'], np.array([1.0, 7.0]), .00001)
def test_prom_conns(self): # this test mimics some of the connections found in test_nozzle in pycycle. The bug was that # an unknown that was connected to one parameter # (desVars.Ps_exhaust to nozzle.press_calcs.Ps_exhaust), was not being connected to the # other parameters ('nozzle.ideal_flow.chem_eq.n2ls.P', 'nozzle.ideal_flow.mach_calc.Ps', # and 'nozzle.ideal_flow.props.tp2props.P') that were connected via input-input connections # to nozzle.press_calcs.Ps_exhaust. prob = Problem(root=Group()) root = prob.root desVars = root.add("desVars", ParamComp('Ps_exhaust', 1.0), promotes=('Ps_exhaust',)) nozzle = root.add("nozzle", Group()) press_calcs = nozzle.add('press_calcs', ExecComp('out=Ps_exhaust'), promotes=('Ps_exhaust',)) ideal_flow = nozzle.add("ideal_flow", Group()) chem_eq = ideal_flow.add('chem_eq', Group(), promotes=('P',)) n2ls = chem_eq.add("n2ls", ExecComp('out=P'), promotes=('P',)) props = ideal_flow.add("props", Group(), promotes=('P',)) tp2props = props.add("tp2props", ExecComp('out=P'), promotes=('P',)) mach_calc = ideal_flow.add("mach_calc", ExecComp('out=Ps'), promotes=('Ps',)) nozzle.connect('Ps_exhaust', 'ideal_flow.Ps') root.connect('Ps_exhaust', 'nozzle.Ps_exhaust') ideal_flow.connect('Ps', 'P') prob.setup(check=False) expected_targets = set(['nozzle.ideal_flow.chem_eq.n2ls.P', 'nozzle.press_calcs.Ps_exhaust', 'nozzle.ideal_flow.mach_calc.Ps', 'nozzle.ideal_flow.props.tp2props.P']) self.assertEqual(set(prob.root.connections), expected_targets) for tgt in expected_targets: self.assertTrue('desVars.Ps_exhaust' in prob.root.connections[tgt])
def test_unequal_training_inputs(self): meta = MetaModel() meta.add_param('x', 0.) meta.add_param('y', 0.) meta.add_output('f', 0.) meta.default_surrogate = FloatKrigingSurrogate() prob = Problem(Group()) prob.root.add('meta', meta) prob.setup(check=False) prob['meta.train:x'] = [1.0, 1.0, 1.0, 1.0] prob['meta.train:y'] = [1.0, 2.0] prob['meta.train:f'] = [1.0, 1.0, 1.0, 1.0] prob['meta.x'] = 1.0 prob['meta.y'] = 1.0 with self.assertRaises(RuntimeError) as cm: prob.run() expected = "MetaModel: Each variable must have the same number" \ " of training points. Expected 4 but found" \ " 2 points for 'y'." self.assertEqual(str(cm.exception), expected)
def test_unequal_training_outputs(self): meta = MetaModel() meta.add_param("x", 0.0) meta.add_param("y", 0.0) meta.add_output("f", 0.0) meta.default_surrogate = FloatKrigingSurrogate() prob = Problem(Group()) prob.root.add("meta", meta) prob.setup(check=False) prob["meta.train:x"] = [1.0, 1.0, 1.0, 1.0] prob["meta.train:y"] = [1.0, 2.0, 3.0, 4.0] prob["meta.train:f"] = [1.0, 1.0] prob["meta.x"] = 1.0 prob["meta.y"] = 1.0 with self.assertRaises(RuntimeError) as cm: prob.run() expected = ( "MetaModel: Each variable must have the same number" " of training points. Expected 4 but found" " 2 points for 'f'." ) self.assertEqual(str(cm.exception), expected)
def test_array_inputs(self): meta = MetaModel() meta.add_param("x", np.zeros((2, 2))) meta.add_output("y1", 0.0) meta.add_output("y2", 0.0) meta.default_surrogate = FloatKrigingSurrogate() prob = Problem(Group()) prob.root.add("meta", meta) prob.setup(check=False) prob["meta.train:x"] = [ [[1.0, 1.0], [1.0, 1.0]], [[2.0, 1.0], [1.0, 1.0]], [[1.0, 2.0], [1.0, 1.0]], [[1.0, 1.0], [2.0, 1.0]], [[1.0, 1.0], [1.0, 2.0]], ] prob["meta.train:y1"] = [3.0, 2.0, 1.0, 6.0, -2.0] prob["meta.train:y2"] = [1.0, 4.0, 7.0, -3.0, 3.0] prob["meta.x"] = [[1.0, 2.0], [1.0, 1.0]] prob.run() assert_rel_error(self, prob["meta.y1"], 1.0, 0.00001) assert_rel_error(self, prob["meta.y2"], 7.0, 0.00001)
def test_parab_FD(self): model = Problem(impl=impl) root = model.root = Group() par = root.add('par', ParallelGroup()) par.add('c1', Parab1D(root=2.0)) par.add('c2', Parab1D(root=3.0)) root.add('p1', ParamComp('x', val=0.0)) root.add('p2', ParamComp('x', val=0.0)) root.connect('p1.x', 'par.c1.x') root.connect('p2.x', 'par.c2.x') root.add('sumcomp', ExecComp('sum = x1+x2')) root.connect('par.c1.y', 'sumcomp.x1') root.connect('par.c2.y', 'sumcomp.x2') driver = model.driver = pyOptSparseDriver() driver.add_param('p1.x', low=-100, high=100) driver.add_param('p2.x', low=-100, high=100) driver.add_objective('sumcomp.sum') root.fd_options['force_fd'] = True model.setup(check=False) model.run() if not MPI or self.comm.rank == 0: assert_rel_error(self, model['p1.x'], 2.0, 1.e-6) assert_rel_error(self, model['p2.x'], 3.0, 1.e-6)
def test_parab_subbed_Pcomps(self): model = Problem(impl=impl) root = model.root = Group() root.ln_solver = lin_solver() par = root.add('par', ParallelGroup()) par.add('s1', MP_Point(root=2.0)) par.add('s2', MP_Point(root=3.0)) root.add('sumcomp', ExecComp('sum = x1+x2')) root.connect('par.s1.c.y', 'sumcomp.x1') root.connect('par.s2.c.y', 'sumcomp.x2') driver = model.driver = pyOptSparseDriver() driver.add_param('par.s1.p.x', low=-100, high=100) driver.add_param('par.s2.p.x', low=-100, high=100) driver.add_objective('sumcomp.sum') model.setup(check=False) model.run() if not MPI or self.comm.rank == 0: assert_rel_error(self, model['par.s1.p.x'], 2.0, 1.e-6) if not MPI or self.comm.rank == 1: assert_rel_error(self, model['par.s2.p.x'], 3.0, 1.e-6)
def test_parab_FD(self): model = Problem(impl=impl) root = model.root = Group() par = root.add("par", ParallelGroup()) par.add("c1", Parab1D(root=2.0)) par.add("c2", Parab1D(root=3.0)) root.add("p1", ParamComp("x", val=0.0)) root.add("p2", ParamComp("x", val=0.0)) root.connect("p1.x", "par.c1.x") root.connect("p2.x", "par.c2.x") root.add("sumcomp", ExecComp("sum = x1+x2")) root.connect("par.c1.y", "sumcomp.x1") root.connect("par.c2.y", "sumcomp.x2") driver = model.driver = pyOptSparseDriver() driver.add_param("p1.x", low=-100, high=100) driver.add_param("p2.x", low=-100, high=100) driver.add_objective("sumcomp.sum") root.fd_options["force_fd"] = True model.setup(check=False) model.run() if not MPI or self.comm.rank == 0: assert_rel_error(self, model["p1.x"], 2.0, 1.0e-6) assert_rel_error(self, model["p2.x"], 3.0, 1.0e-6)
def test_parab_FD_subbed_Pcomps(self): model = Problem(impl=impl) root = model.root = Group() par = root.add("par", ParallelGroup()) par.add("s1", MP_Point(root=2.0)) par.add("s2", MP_Point(root=3.0)) root.add("sumcomp", ExecComp("sum = x1+x2")) root.connect("par.s1.c.y", "sumcomp.x1") root.connect("par.s2.c.y", "sumcomp.x2") driver = model.driver = pyOptSparseDriver() driver.add_param("par.s1.p.x", low=-100, high=100) driver.add_param("par.s2.p.x", low=-100, high=100) driver.add_objective("sumcomp.sum") root.fd_options["force_fd"] = True model.setup(check=False) model.run() if not MPI or self.comm.rank == 0: assert_rel_error(self, model["par.s1.p.x"], 2.0, 1.0e-6) if not MPI or self.comm.rank == 1: assert_rel_error(self, model["par.s2.p.x"], 3.0, 1.0e-6)
def test_one_dim_bi_fidelity_training(self): mm = MultiFiMetaModel(nfi=2) mm.add_param('x', 0.) surr = MockSurrogate() mm.add_output('y', 0., surrogate = surr) prob = Problem(Group()) prob.root.add('mm', mm) prob.setup(check=False) prob['mm.train:x']= [0.0, 0.4, 1.0] prob['mm.train:x_fi2'] = [0.1, 0.2, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 0.0, 0.4, 1.0] prob['mm.train:y'] = [3.02720998, 0.11477697, 15.82973195] prob['mm.train:y_fi2'] = [-9.32828839, -8.31986355, -7.00778837, -4.54535129, -4.0747189 , -5.30287702, -4.47456522, 1.85597517, -8.48639501, -5.94261151, 7.91486597] expected_xtrain=[np.array([[0.0], [0.4], [1.0]]), np.array([[0.1], [0.2], [0.3], [0.5], [0.6], [0.7], [0.8], [0.9], [0.0], [0.4], [1.0]])] expected_ytrain=[np.array([[ 3.02720998], [0.11477697], [15.82973195]]), np.array([[-9.32828839], [-8.31986355], [-7.00778837], [-4.54535129], [-4.0747189], [-5.30287702], [-4.47456522], [1.85597517], [-8.48639501], [-5.94261151], [7.91486597]])] prob.run() np.testing.assert_array_equal(surr.xtrain[0], expected_xtrain[0]) np.testing.assert_array_equal(surr.xtrain[1], expected_xtrain[1]) np.testing.assert_array_equal(surr.ytrain[0], expected_ytrain[0]) np.testing.assert_array_equal(surr.ytrain[1], expected_ytrain[1])
def test_vector_inputs(self): meta = MetaModel() meta.add_param('x', np.zeros(4)) meta.add_output('y1', 0.) meta.add_output('y2', 0.) meta.default_surrogate = FloatKrigingSurrogate() prob = Problem(Group()) prob.root.add('meta', meta) prob.setup(check=False) prob['meta.train:x'] = [ [1.0, 1.0, 1.0, 1.0], [2.0, 1.0, 1.0, 1.0], [1.0, 2.0, 1.0, 1.0], [1.0, 1.0, 2.0, 1.0], [1.0, 1.0, 1.0, 2.0] ] prob['meta.train:y1'] = [3.0, 2.0, 1.0, 6.0, -2.0] prob['meta.train:y2'] = [1.0, 4.0, 7.0, -3.0, 3.0] prob['meta.x'] = [1.0, 2.0, 1.0, 1.0] prob.run() assert_rel_error(self, prob['meta.y1'], 1.0, .00001) assert_rel_error(self, prob['meta.y2'], 7.0, .00001)
def test_simple_deriv_xfer(self): prob = Problem(impl=impl) prob.root = FanInGrouped() prob.setup(check=False) prob.root.comp3.dpmat[None]['x1'] = 7. prob.root.comp3.dpmat[None]['x2'] = 11. prob.root._transfer_data(mode='rev', deriv=True) if not MPI or self.comm.rank == 0: self.assertEqual(prob.root.sub.comp1.dumat[None]['y'], 7.) if not MPI or self.comm.rank == 1: self.assertEqual(prob.root.sub.comp2.dumat[None]['y'], 11.) prob.root.comp3.dpmat[None]['x1'] = 0. prob.root.comp3.dpmat[None]['x2'] = 0. self.assertEqual(prob.root.comp3.dpmat[None]['x1'], 0.) self.assertEqual(prob.root.comp3.dpmat[None]['x2'], 0.) prob.root._transfer_data(mode='fwd', deriv=True) self.assertEqual(prob.root.comp3.dpmat[None]['x1'], 7.) self.assertEqual(prob.root.comp3.dpmat[None]['x2'], 11.)
def test_math(self): prob = Problem(root=Group()) C1 = prob.root.add('C1', ExecComp('y=sin(x)', x=2.0)) self.assertTrue('x' in C1._params_dict) self.assertTrue('y' in C1._unknowns_dict) prob.setup(check=False) prob.run() assert_rel_error(self, C1.unknowns['y'], math.sin(2.0), 0.00001)
def test_array(self): prob = Problem(root=Group()) C1 = prob.root.add('C1', ExecComp('y=x[1]', x=np.array([1.,2.,3.]), y=0.0)) self.assertTrue('x' in C1._params_dict) self.assertTrue('y' in C1._unknowns_dict) prob.setup(check=False) prob.run() assert_rel_error(self, C1.unknowns['y'], 2.0, 0.00001)
def test_double_arraycomp(self): # Mainly testing a bug in the array return for multiple arrays group = Group() group.add('x_param1', IndepVarComp('x1', np.ones((2))), promotes=['*']) group.add('x_param2', IndepVarComp('x2', np.ones((2))), promotes=['*']) group.add('mycomp', DoubleArrayComp(), promotes=['*']) prob = Problem(impl=impl) prob.root = group prob.root.ln_solver = PetscKSP() prob.setup(check=False) prob.run() Jbase = group.mycomp.JJ J = prob.calc_gradient(['x1', 'x2'], ['y1', 'y2'], mode='fwd', return_format='array') diff = np.linalg.norm(J - Jbase) assert_rel_error(self, diff, 0.0, 1e-8) J = prob.calc_gradient(['x1', 'x2'], ['y1', 'y2'], mode='fd', return_format='array') diff = np.linalg.norm(J - Jbase) assert_rel_error(self, diff, 0.0, 1e-8) J = prob.calc_gradient(['x1', 'x2'], ['y1', 'y2'], mode='rev', return_format='array') diff = np.linalg.norm(J - Jbase) assert_rel_error(self, diff, 0.0, 1e-8)
def test_converge_diverge_compfd(self): prob = Problem(impl=impl) prob.root = ConvergeDivergePar() prob.root.ln_solver = PetscKSP() # fd comp2 and comp5. each is under a par group prob.root.par1.comp2.fd_options['force_fd'] = True prob.root.par2.comp5.fd_options['force_fd'] = True prob.setup(check=False) prob.run() # Make sure value is fine. assert_rel_error(self, prob['comp7.y1'], -102.7, 1e-6) indep_list = ['p.x'] unknown_list = ['comp7.y1'] J = prob.calc_gradient(indep_list, unknown_list, mode='fwd', return_format='dict') assert_rel_error(self, J['comp7.y1']['p.x'][0][0], -40.75, 1e-6) J = prob.calc_gradient(indep_list, unknown_list, mode='rev', return_format='dict') assert_rel_error(self, J['comp7.y1']['p.x'][0][0], -40.75, 1e-6) J = prob.calc_gradient(indep_list, unknown_list, mode='fd', return_format='dict') assert_rel_error(self, J['comp7.y1']['p.x'][0][0], -40.75, 1e-6)
def test_mixed_type(self): prob = Problem(root=Group()) C1 = prob.root.add('C1', ExecComp('y=numpy.sum(x)', x=np.arange(10,dtype=float))) self.assertTrue('x' in C1._params_dict) self.assertTrue('y' in C1._unknowns_dict) prob.setup(check=False) prob.run() assert_rel_error(self, C1.unknowns['y'], 45.0, 0.00001)
def test_array_lhs(self): prob = Problem(root=Group()) C1 = prob.root.add('C1', ExecComp(['y[0]=x[1]', 'y[1]=x[0]'], x=np.array([1.,2.,3.]), y=np.array([0.,0.]))) self.assertTrue('x' in C1._params_dict) self.assertTrue('y' in C1._unknowns_dict) prob.setup(check=False) prob.run() assert_rel_error(self, C1.unknowns['y'], np.array([2.,1.]), 0.00001)
def test_derivatives(self): meta = MetaModel() meta.add_param('x', 0.) meta.add_output('f', 0.) meta.default_surrogate = FloatKrigingSurrogate() prob = Problem(Group()) prob.root.add('meta', meta, promotes=['x']) prob.root.add('p', IndepVarComp('x', 0.), promotes=['x']) prob.setup(check=False) prob['meta.train:x'] = [0., .25, .5, .75, 1.] prob['meta.train:f'] = [1., .75, .5, .25, 0.] prob['x'] = 0.125 prob.run() Jf = prob.calc_gradient(['x'], ['meta.f'], mode='fwd') Jr = prob.calc_gradient(['x'], ['meta.f'], mode='rev') assert_rel_error(self, Jf[0][0], -1.00011, 1.0e-5) assert_rel_error(self, Jr[0][0], -1.00011, 1.0e-5) stream = cStringIO() prob.check_partial_derivatives(out_stream=stream) abs_errors = findall('Absolute Error \(.+\) : (.+)', stream.getvalue()) self.assertTrue(len(abs_errors) > 0) for match in abs_errors: abs_error = float(match) self.assertTrue(abs_error < 1e-6)
def setUp(self): if SKIP: raise unittest.SkipTest('Could not import pyOptSparseDriver. Is pyoptsparse installed?') prob = Problem(impl=impl) root = prob.root = Group() #root.ln_solver = lin_solver() root.ln_solver = LinearGaussSeidel() par = root.add('par', ParallelGroup()) par.ln_solver = LinearGaussSeidel() ser1 = par.add('ser1', Group()) ser1.ln_solver = LinearGaussSeidel() ser1.add('p1', IndepVarComp('x', np.zeros([2]))) ser1.add('comp', SimpleArrayComp()) ser1.add('con', ExecComp('c = y - 20.0', c=np.array([0.0, 0.0]), y=np.array([0.0, 0.0]))) ser1.add('obj', ExecComp('o = y[0]', y=np.array([0.0, 0.0]))) ser2 = par.add('ser2', Group()) ser2.ln_solver = LinearGaussSeidel() ser2.add('p1', IndepVarComp('x', np.zeros([2]))) ser2.add('comp', SimpleArrayComp()) ser2.add('con', ExecComp('c = y - 30.0', c=np.array([0.0, 0.0]), y=np.array([0.0, 0.0]))) ser2.add('obj', ExecComp('o = y[0]', y=np.array([0.0, 0.0]))) root.add('total', ExecComp('obj = x1 + x2')) ser1.connect('p1.x', 'comp.x') ser1.connect('comp.y', 'con.y') ser1.connect('comp.y', 'obj.y') root.connect('par.ser1.obj.o', 'total.x1') ser2.connect('p1.x', 'comp.x') ser2.connect('comp.y', 'con.y') ser2.connect('comp.y', 'obj.y') root.connect('par.ser2.obj.o', 'total.x2') prob.driver = pyOptSparseDriver() prob.driver.add_desvar('par.ser1.p1.x', low=-50.0, high=50.0) prob.driver.add_desvar('par.ser2.p1.x', low=-50.0, high=50.0) prob.driver.add_objective('total.obj') prob.driver.add_constraint('par.ser1.con.c', equals=0.0) prob.driver.add_constraint('par.ser2.con.c', equals=0.0) self.prob = prob
def test_complex_step(self): prob = Problem(root=Group()) C1 = prob.root.add('C1', ExecComp(['y=2.0*x+1.'], x=2.0)) self.assertTrue('x' in C1._params_dict) self.assertTrue('y' in C1._unknowns_dict) prob.setup(check=False) prob.run() assert_rel_error(self, C1.unknowns['y'], 5.0, 0.00001) J = C1.jacobian(C1.params, C1.unknowns, C1.resids) assert_rel_error(self, J[('y','x')], 2.0, 0.00001)
def test_array_to_scalar(self): root = Group() root.add('P1', ParamComp('x', np.array([2., 3.]))) root.add('C1', SimpleComp()) root.add('C2', ExecComp('y = x * 3.', y=0., x=0.)) root.connect('P1.x', 'C1.x', src_indices=[0,]) root.connect('P1.x', 'C2.x', src_indices=[1,]) prob = Problem(root) prob.setup(check=False) prob.run() self.assertAlmostEqual(root.C1.params['x'], 2.) self.assertAlmostEqual(root.C2.params['x'], 3.)
def test_inputs_wrt_nfidelity(self): mm = MultiFiMetaModel(nfi=3) mm.add_param('x', 0.) mm.add_output('y', 0.) prob = Problem(Group()) prob.root.add('mm', mm) prob.setup(check=False) self.assertEqual(prob['mm.train:x'], []) self.assertEqual(prob['mm.train:x_fi2'], []) self.assertEqual(prob['mm.train:x_fi3'], []) self.assertEqual(prob['mm.train:y'], []) self.assertEqual(prob['mm.train:y_fi2'], []) self.assertEqual(prob['mm.train:y_fi3'], [])
def test_subarray_to_promoted_var(self): root = Group() P = root.add('P', IndepVarComp('x', np.array([1., 2., 3., 4., 5.]))) G = root.add('G', Group()) C = root.add('C', SimpleComp()) A = G.add('A', SimpleArrayComp()) G2 = G.add('G2', Group()) A2 = G2.add('A2', SimpleArrayComp()) root.connect('P.x', 'G.A.x', src_indices=[0,1]) root.connect('P.x', 'C.x', src_indices=[2,]) root.connect('P.x', 'G.G2.A2.x', src_indices=[3, 4]) prob = Problem(root) prob.setup(check=False) prob.run() assert_rel_error(self, root.G.A.params['x'], np.array([1., 2.]), 0.0001) self.assertAlmostEqual(root.C.params['x'], 3.) assert_rel_error(self, root.G.G2.A2.params['x'], np.array([4., 5.]), 0.0001) # now try the same thing with promoted var root = Group() P = root.add('P', IndepVarComp('x', np.array([1., 2., 3., 4., 5.]))) G = root.add('G', Group()) C = root.add('C', SimpleComp()) A = G.add('A', SimpleArrayComp(), promotes=['x', 'y']) G2 = G.add('G2', Group()) A2 = G2.add('A2', SimpleArrayComp(), promotes=['x', 'y']) root.connect('P.x', 'G.x', src_indices=[0,1]) root.connect('P.x', 'C.x', src_indices=[2,]) root.connect('P.x', 'G.G2.x', src_indices=[3, 4]) prob = Problem(root) prob.setup(check=False) prob.run() assert_rel_error(self, root.G.A.params['x'], np.array([1., 2.]), 0.0001) self.assertAlmostEqual(root.C.params['x'], 3.) assert_rel_error(self, root.G.G2.A2.params['x'], np.array([4., 5.]), 0.0001)
def test_one_dim_one_fidelity_training(self): mm = MultiFiMetaModel() mm.add_param('x', 0.) surr = MockSurrogate() mm.add_output('y', 0., surrogate = surr) prob = Problem(Group()) prob.root.add('mm', mm) prob.setup(check=False) prob['mm.train:x'] = [0.0, 0.4, 1.0] prob['mm.train:y'] = [3.02720998, 0.11477697, 15.82973195] expected_xtrain=[np.array([ [0.0], [0.4], [1.0] ])] expected_ytrain=[np.array([ [3.02720998], [0.11477697], [15.82973195] ])] prob.run() np.testing.assert_array_equal(surr.xtrain, expected_xtrain) np.testing.assert_array_equal(surr.ytrain, expected_ytrain) expected_xpredict=0.5 prob['mm.x'] = expected_xpredict prob.run() np.testing.assert_array_equal(surr.xpredict, expected_xpredict)
def test_fan_out_grouped(self): prob = Problem(impl=impl) prob.root = root = Group() root.add('p', IndepVarComp('x', 1.0)) root.add('comp1', ExecComp(['y=3.0*x'])) sub = root.add('sub', ParallelGroup()) sub.add('comp2', ExecComp(['y=-2.0*x'])) sub.add('comp3', ExecComp(['y=5.0*x'])) root.add('c2', ExecComp(['y=-x'])) root.add('c3', ExecComp(['y=3.0*x'])) root.connect('sub.comp2.y', 'c2.x') root.connect('sub.comp3.y', 'c3.x') root.connect("comp1.y", "sub.comp2.x") root.connect("comp1.y", "sub.comp3.x") root.connect("p.x", "comp1.x") prob.root.ln_solver = LinearGaussSeidel() prob.root.sub.ln_solver = LinearGaussSeidel() prob.setup(check=False) prob.run() param = 'p.x' unknown_list = ['sub.comp2.y', "sub.comp3.y"] J = prob.calc_gradient([param], unknown_list, mode='fwd', return_format='dict') assert_rel_error(self, J[unknown_list[0]][param][0][0], -6.0, 1e-6) assert_rel_error(self, J[unknown_list[1]][param][0][0], 15.0, 1e-6) J = prob.calc_gradient([param], unknown_list, mode='rev', return_format='dict') assert_rel_error(self, J[unknown_list[0]][param][0][0], -6.0, 1e-6) assert_rel_error(self, J[unknown_list[1]][param][0][0], 15.0, 1e-6) unknown_list = ['c2.y', "c3.y"] J = prob.calc_gradient([param], unknown_list, mode='fwd', return_format='dict') assert_rel_error(self, J[unknown_list[0]][param][0][0], 6.0, 1e-6) assert_rel_error(self, J[unknown_list[1]][param][0][0], 45.0, 1e-6) J = prob.calc_gradient([param], unknown_list, mode='rev', return_format='dict') assert_rel_error(self, J[unknown_list[0]][param][0][0], 6.0, 1e-6) assert_rel_error(self, J[unknown_list[1]][param][0][0], 45.0, 1e-6)
def test_fd_options_meta_step_size(self): class MetaParaboloid(Component): """ Evaluates the equation f(x,y) = (x-3)^2 + xy + (y+4)^2 - 3 """ def __init__(self): super(MetaParaboloid, self).__init__() # Params self.add_param('x', 1.0, fd_step_size = 1.0e5) self.add_param('y', 1.0, fd_step_size = 1.0e5) # Unknowns self.add_output('f_xy', 0.0) def solve_nonlinear(self, params, unknowns, resids): """f(x,y) = (x-3)^2 + xy + (y+4)^2 - 3 Optimal solution (minimum): x = 6.6667; y = -7.3333 """ x = params['x'] y = params['y'] f_xy = ((x-3.0)**2 + x*y + (y+4.0)**2 - 3.0) unknowns['f_xy'] = f_xy def jacobian(self, params, unknowns, resids): """Analytical derivatives""" x = params['x'] y = params['y'] J = {} J['f_xy', 'x'] = (2.0*x - 6.0 + y) J['f_xy', 'y'] = (2.0*y + 8.0 + x) return J prob = Problem() prob.root = Group() comp = prob.root.add('comp', MetaParaboloid()) prob.root.add('p1', ParamComp('x', 15.0)) prob.root.add('p2', ParamComp('y', 15.0)) prob.root.connect('p1.x', 'comp.x') prob.root.connect('p2.y', 'comp.y') comp.fd_options['force_fd'] = True prob.setup(check=False) prob.run() # Make sure bad meta step_size is used # Derivative should be way high with this. J = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict') self.assertGreater(J['comp.f_xy']['p1.x'][0][0], 1000.0)
def setUp(self): self.startdir = os.getcwd() self.tempdir = tempfile.mkdtemp(prefix='test_extcode-') os.chdir(self.tempdir) shutil.copy(os.path.join(DIRECTORY, 'external_code_for_testing.py'), os.path.join(self.tempdir, 'external_code_for_testing.py')) self.extcode = ExternalCodeForTesting() self.top = Problem() self.top.root = Group() self.top.root.add('extcode', self.extcode)
def test_two_dim_bi_fidelity_training(self): mm = MultiFiMetaModel(nfi=2) mm.add_param('x1', 0.) mm.add_param('x2', 0.) surr_y1 = MockSurrogate() surr_y2 = MockSurrogate() mm.add_output('y1', 0., surrogate = surr_y1) mm.add_output('y2', 0., surrogate = surr_y2) prob = Problem(Group()) prob.root.add('mm', mm) prob.setup(check=False) prob['mm.train:x1'] = [1.0, 2.0, 3.0] prob['mm.train:x1_fi2'] = [1.1, 2.1, 3.1, 1.0, 2.0, 3.0] prob['mm.train:x2'] = [1.0, 2.0, 3.0] prob['mm.train:x2_fi2'] = [2.1, 2.2, 2.3, 1.0, 2.0, 3.0] prob['mm.train:y1'] = [0.0, 0.1, 0.2] prob['mm.train:y1_fi2'] = [3.0, 3.1, 3.3, 3.4, 3.5 ,3.6] prob['mm.train:y2'] = [4.0, 4.0, 4.0] prob['mm.train:y2_fi2'] = [4.0, 4.1, 4.3, 4.4, 4.5 ,4.6] prob.run() expected_xtrain=[np.array([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0]]), np.array([[1.1, 2.1], [2.1, 2.2], [3.1, 2.3], [1.0, 1.0], [2.0, 2.0], [3.0, 3.0]])] expected_y1train=[np.array([[0.0], [0.1], [0.2]]), np.array([[3.0], [3.1], [3.3], [3.4], [3.5], [3.6]])] expected_y2train=[np.array([[4.0], [4.0], [4.0]]), np.array([[4.0], [4.1], [4.3], [4.4], [4.5], [4.6]])] np.testing.assert_array_equal(surr_y1.ytrain[0], expected_y1train[0]) np.testing.assert_array_equal(surr_y1.ytrain[1], expected_y1train[1]) np.testing.assert_array_equal(surr_y2.ytrain[0], expected_y2train[0]) np.testing.assert_array_equal(surr_y2.ytrain[1], expected_y2train[1]) np.testing.assert_array_equal(surr_y1.ytrain[0], expected_y1train[0]) np.testing.assert_array_equal(surr_y1.ytrain[1], expected_y1train[1]) np.testing.assert_array_equal(surr_y2.ytrain[0], expected_y2train[0]) np.testing.assert_array_equal(surr_y2.ytrain[1], expected_y2train[1])
def test_indices(self): size = 10 root = Group() root.add('P1', ParamComp('x', np.zeros(size))) root.add('C1', ExecComp('y = x * 2.', y=np.zeros(size//2), x=np.zeros(size//2))) root.add('C2', ExecComp('y = x * 3.', y=np.zeros(size//2), x=np.zeros(size//2))) root.connect('P1.x', "C1.x", src_indices=list(range(size//2))) root.connect('P1.x', "C2.x", src_indices=list(range(size//2, size))) prob = Problem(root) prob.setup(check=False) root.P1.unknowns['x'][0:size//2] += 1.0 root.P1.unknowns['x'][size//2:size] -= 1.0 prob.run() assert_rel_error(self, root.C1.params['x'], np.ones(size//2), 0.0001) assert_rel_error(self, root.C2.params['x'], -np.ones(size//2), 0.0001)
def test_overrides(self): class OverrideComp(Component): def __init__(self): super(OverrideComp, self).__init__() # Params self.add_param('x', 3.0) # Unknowns self.add_output('y', 5.5) def solve_nonlinear(self, params, unknowns, resids): """ Doesn't do much. """ unknowns['y'] = 7.0 * params['x'] def apply_linear(self, params, unknowns, dparams, dunknowns, dresids, mode): """Never Call.""" raise RuntimeError( "This should have been overridden by force_fd.") def jacobian(self, params, unknowns, resids): """Never Call.""" raise RuntimeError( "This should have been overridden by force_fd.") prob = Problem() prob.root = Group() comp = prob.root.add('comp', OverrideComp()) prob.root.add('p1', ParamComp('x', 2.0)) prob.root.connect('p1.x', 'comp.x') comp.fd_options['force_fd'] = True prob.setup(check=False) prob.run() J = prob.calc_gradient(['p1.x'], ['comp.y'], mode='fwd', return_format='dict') assert_rel_error(self, J['comp.y']['p1.x'][0][0], 7.0, 1e-6)
def test_single_diamond(self): prob = Problem(impl=impl) prob.root = SingleDiamondPar() prob.root.ln_solver = PetscKSP() prob.setup(check=False) prob.run() param_list = ['p.x'] unknown_list = ['comp4.y1', 'comp4.y2'] J = prob.calc_gradient(param_list, unknown_list, mode='fwd', return_format='dict') assert_rel_error(self, J['comp4.y1']['p.x'][0][0], 25, 1e-6) assert_rel_error(self, J['comp4.y2']['p.x'][0][0], -40.5, 1e-6) J = prob.calc_gradient(param_list, unknown_list, mode='rev', return_format='dict') assert_rel_error(self, J['comp4.y1']['p.x'][0][0], 25, 1e-6) assert_rel_error(self, J['comp4.y2']['p.x'][0][0], -40.5, 1e-6)
def test_fan_out_grouped(self): prob = Problem(impl=impl) prob.root = FanOutGrouped() prob.root.ln_solver = PetscKSP() prob.setup(check=False) prob.run() param_list = ['p.x'] unknown_list = ['sub.comp2.y', "sub.comp3.y"] J = prob.calc_gradient(param_list, unknown_list, mode='fwd', return_format='dict') assert_rel_error(self, J['sub.comp2.y']['p.x'][0][0], -6.0, 1e-6) assert_rel_error(self, J['sub.comp3.y']['p.x'][0][0], 15.0, 1e-6) J = prob.calc_gradient(param_list, unknown_list, mode='rev', return_format='dict') assert_rel_error(self, J['sub.comp2.y']['p.x'][0][0], -6.0, 1e-6) assert_rel_error(self, J['sub.comp3.y']['p.x'][0][0], 15.0, 1e-6)
def test_fan_in(self): prob = Problem(impl=impl) prob.root = FanIn() prob.root.ln_solver = PetscKSP() prob.setup(check=False) prob.run() param_list = ['p1.x1', 'p2.x2'] unknown_list = ['comp3.y'] J = prob.calc_gradient(param_list, unknown_list, mode='fwd', return_format='dict') assert_rel_error(self, J['comp3.y']['p1.x1'][0][0], -6.0, 1e-6) assert_rel_error(self, J['comp3.y']['p2.x2'][0][0], 35.0, 1e-6) J = prob.calc_gradient(param_list, unknown_list, mode='rev', return_format='dict') assert_rel_error(self, J['comp3.y']['p1.x1'][0][0], -6.0, 1e-6) assert_rel_error(self, J['comp3.y']['p2.x2'][0][0], 35.0, 1e-6)
def test_array_lhs(self): prob = Problem(root=Group()) C1 = prob.root.add( 'C1', ExecComp(['y[0]=x[1]', 'y[1]=x[0]'], x=np.array([1., 2., 3.]), y=np.array([0., 0.]))) self.assertTrue('x' in C1._params_dict) self.assertTrue('y' in C1._unknowns_dict) prob.setup(check=False) prob.run() assert_rel_error(self, C1.unknowns['y'], np.array([2., 1.]), 0.00001)
def test_complex_step(self): prob = Problem(root=Group()) C1 = prob.root.add('C1', ExecComp(['y=2.0*x+1.'], x=2.0)) self.assertTrue('x' in C1._params_dict) self.assertTrue('y' in C1._unknowns_dict) prob.setup(check=False) prob.run() assert_rel_error(self, C1.unknowns['y'], 5.0, 0.00001) J = C1.jacobian(C1.params, C1.unknowns, C1.resids) assert_rel_error(self, J[('y', 'x')], 2.0, 0.00001)
def test_sin_metamodel(self): # create a MetaModel for Sin and add it to a Problem sin_mm = MetaModel() sin_mm.add_param('x', 0.) sin_mm.add_output('f_x', 0.) prob = Problem(Group()) prob.root.add('sin_mm', sin_mm) # check that missing surrogate is detected in check_setup stream = cStringIO() prob.setup(out_stream=stream) msg = ("No default surrogate model is defined and the " "following outputs do not have a surrogate model:\n" "['f_x']\n" "Either specify a default_surrogate, or specify a " "surrogate model for all outputs.") self.assertTrue(msg in stream.getvalue()) # check that output with no specified surrogate gets the default sin_mm.default_surrogate = FloatKrigingSurrogate() prob.setup(check=False) surrogate = prob.root.unknowns.metadata('sin_mm.f_x').get('surrogate') self.assertTrue(isinstance(surrogate, FloatKrigingSurrogate), 'sin_mm.f_x should get the default surrogate') # train the surrogate and check predicted value prob['sin_mm.train:x'] = np.linspace(0, 10, 200) prob['sin_mm.train:f_x'] = .5 * np.sin(prob['sin_mm.train:x']) prob['sin_mm.x'] = 2.22 prob.run() self.assertAlmostEqual(prob['sin_mm.f_x'], .5 * np.sin(prob['sin_mm.x']), places=5)
def test_sin_metamodel_obj_return(self): # create a MetaModel for Sin and add it to a Problem sin_mm = MetaModel() sin_mm.add_param('x', 0.) sin_mm.add_output('f_x', (0., 0.)) prob = Problem(Group()) prob.root.add('sin_mm', sin_mm) # check that missing surrogate is detected in check_setup stream = cStringIO() prob.setup(out_stream=stream) msg = ("No default surrogate model is defined and the " "following outputs do not have a surrogate model:\n" "['f_x']\n" "Either specify a default_surrogate, or specify a " "surrogate model for all outputs.") self.assertTrue(msg in stream.getvalue()) # check that output with no specified surrogate gets the default sin_mm.default_surrogate = KrigingSurrogate() prob.setup(check=False) surrogate = prob.root.unknowns.metadata('sin_mm.f_x').get('surrogate') self.assertTrue(isinstance(surrogate, KrigingSurrogate), 'sin_mm.f_x should get the default surrogate') # train the surrogate and check predicted value prob['sin_mm.train:x'] = np.linspace(0, 10, 20) prob['sin_mm.train:f_x'] = np.sin(prob['sin_mm.train:x']) prob['sin_mm.x'] = 2.1 prob.run() assert_rel_error(self, prob['sin_mm.f_x'][0], 0.86323233, 1e-4) # mean self.assertTrue(self, prob['sin_mm.f_x'][1] < 1e-5) #std deviation
def test_derivatives(self): meta = MetaModel() meta.add_param('x', 0.) meta.add_output('f', 0.) meta.default_surrogate = FloatKrigingSurrogate() prob = Problem(Group()) prob.root.add('meta', meta, promotes=['x']) prob.root.add('p', ParamComp('x', 0.), promotes=['x']) prob.setup(check=False) prob['meta.train:x'] = [0., .25, .5, .75, 1.] prob['meta.train:f'] = [1., .75, .5, .25, 0.] prob['x'] = 0.125 prob.run() stream = cStringIO() prob.check_partial_derivatives(out_stream=stream) abs_errors = findall('Absolute Error \(.+\) : (.+)', stream.getvalue()) self.assertTrue(len(abs_errors) > 0) for match in abs_errors: abs_error = float(match) self.assertTrue(abs_error < 1e-6)
def test_array_to_scalar(self): root = Group() root.add('P1', ParamComp('x', np.array([2., 3.]))) root.add('C1', SimpleComp()) root.add('C2', ExecComp('y = x * 3.', y=0., x=0.)) root.connect('P1.x', 'C1.x', src_indices=[ 0, ]) root.connect('P1.x', 'C2.x', src_indices=[ 1, ]) prob = Problem(root) prob.setup(check=False) prob.run() self.assertAlmostEqual(root.C1.params['x'], 2.) self.assertAlmostEqual(root.C2.params['x'], 3.)
def test_vector_inputs(self): meta = MetaModel() meta.add_param('x', np.zeros(4)) meta.add_output('y1', 0.) meta.add_output('y2', 0.) meta.default_surrogate = FloatKrigingSurrogate() prob = Problem(Group()) prob.root.add('meta', meta) prob.setup(check=False) prob['meta.train:x'] = [[1.0, 1.0, 1.0, 1.0], [2.0, 1.0, 1.0, 1.0], [1.0, 2.0, 1.0, 1.0], [1.0, 1.0, 2.0, 1.0], [1.0, 1.0, 1.0, 2.0]] prob['meta.train:y1'] = [3.0, 2.0, 1.0, 6.0, -2.0] prob['meta.train:y2'] = [1.0, 4.0, 7.0, -3.0, 3.0] prob['meta.x'] = [1.0, 2.0, 1.0, 1.0] prob.run() assert_rel_error(self, prob['meta.y1'], 1.0, .00001) assert_rel_error(self, prob['meta.y2'], 7.0, .00001)
def test_array_outputs(self): meta = MetaModel() meta.add_param('x', np.zeros((2, 2))) meta.add_output('y', np.zeros(2, )) meta.default_surrogate = FloatKrigingSurrogate() prob = Problem(Group()) prob.root.add('meta', meta) prob.setup(check=False) prob['meta.train:x'] = [[[1.0, 1.0], [1.0, 1.0]], [[2.0, 1.0], [1.0, 1.0]], [[1.0, 2.0], [1.0, 1.0]], [[1.0, 1.0], [2.0, 1.0]], [[1.0, 1.0], [1.0, 2.0]]] prob['meta.train:y'] = [[3.0, 1.0], [2.0, 4.0], [1.0, 7.0], [6.0, -3.0], [-2.0, 3.0]] prob['meta.x'] = [[1.0, 2.0], [1.0, 1.0]] prob.run() assert_rel_error(self, prob['meta.y'], np.array([1.0, 7.0]), .00001)
def test_fd_options_form(self): prob = Problem() prob.root = Group() comp = prob.root.add('comp', Paraboloid()) prob.root.add('p1', ParamComp('x', 15.0)) prob.root.add('p2', ParamComp('y', 15.0)) prob.root.connect('p1.x', 'comp.x') prob.root.connect('p2.y', 'comp.y') comp.fd_options['force_fd'] = True comp.fd_options['form'] = 'forward' param_list = ['p1.x'] unknowns_list = ['comp.f_xy'] prob.setup(check=False) prob.run() J = prob.calc_gradient(param_list, unknowns_list, return_format='dict') assert_rel_error(self, J['comp.f_xy']['p1.x'][0][0], 39.0, 1e-6) # Make sure it gives good result with small stepsize comp.fd_options['form'] = 'backward' J = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict') assert_rel_error(self, J['comp.f_xy']['p1.x'][0][0], 39.0, 1e-6) # Make sure it gives good result with small stepsize comp.fd_options['form'] = 'central' J = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict') assert_rel_error(self, J['comp.f_xy']['p1.x'][0][0], 39.0, 1e-6) # Now, Make sure we really are going foward and backward comp.fd_options['form'] = 'forward' comp.fd_options['step_size'] = 1e3 J = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict') self.assertGreater(J['comp.f_xy']['p1.x'][0][0], 0.0) comp.fd_options['form'] = 'backward' J = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict') self.assertLess(J['comp.f_xy']['p1.x'][0][0], 0.0) # Central should get pretty close even for the bad stepsize comp.fd_options['form'] = 'central' J = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict') assert_rel_error(self, J['comp.f_xy']['p1.x'][0][0], 39.0, 1e-1)
def test_fd_options_step_type(self): class ScaledParaboloid(Component): """ Evaluates the equation f(x,y) = (x-3)^2 + xy + (y+4)^2 - 3 """ def __init__(self): super(ScaledParaboloid, self).__init__() # Params self.add_param('x', 1.0) self.add_param('y', 1.0) # Unknowns self.add_output('f_xy', 0.0) self.scale = 1.0e-6 def solve_nonlinear(self, params, unknowns, resids): """f(x,y) = (x-3)^2 + xy + (y+4)^2 - 3 Optimal solution (minimum): x = 6.6667; y = -7.3333 """ x = params['x'] y = params['y'] f_xy = ((x - 3.0)**2 + x * y + (y + 4.0)**2 - 3.0) unknowns['f_xy'] = self.scale * f_xy def jacobian(self, params, unknowns, resids): """Analytical derivatives""" x = params['x'] y = params['y'] J = {} J['f_xy', 'x'] = (2.0 * x - 6.0 + y) * self.scale J['f_xy', 'y'] = (2.0 * y + 8.0 + x) * self.scale return J prob = Problem() prob.root = Group() comp = prob.root.add('comp', ScaledParaboloid()) prob.root.add('p1', ParamComp('x', 8.0 * comp.scale)) prob.root.add('p2', ParamComp('y', 8.0 * comp.scale)) prob.root.connect('p1.x', 'comp.x') prob.root.connect('p2.y', 'comp.y') comp.fd_options['force_fd'] = True comp.fd_options['step_type'] = 'absolute' prob.setup(check=False) prob.run() J1 = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict') comp.fd_options['step_type'] = 'relative' J2 = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict') # Couldnt put together a case where one is much worse, so just make sure they # are not equal. self.assertNotEqual(self, J1['comp.f_xy']['p1.x'][0][0], J2['comp.f_xy']['p1.x'][0][0])
def test_subarray_to_promoted_var(self): root = Group() P = root.add('P', ParamComp('x', np.array([1., 2., 3.]))) G = root.add('G', Group()) C = root.add('C', SimpleComp()) A = G.add('A', SimpleArrayComp()) # , promotes=['x', 'y']) root.connect('P.x', 'G.A.x', src_indices=[0, 1]) root.connect('P.x', 'C.x', src_indices=[ 2, ]) prob = Problem(root) prob.setup(check=False) prob.run() assert_rel_error(self, root.G.A.params['x'], np.array([1., 2.]), 0.0001) self.assertAlmostEqual(root.C.params['x'], 3.) # no try the same thing with promoted var root = Group() P = root.add('P', ParamComp('x', np.array([1., 2., 3.]))) G = root.add('G', Group()) C = root.add('C', SimpleComp()) A = G.add('A', SimpleArrayComp(), promotes=['x', 'y']) root.connect('P.x', 'G.x', src_indices=[0, 1]) root.connect('P.x', 'C.x', src_indices=[ 2, ]) prob = Problem(root) prob.setup(check=False) prob.run() assert_rel_error(self, root.G.A.params['x'], np.array([1., 2.]), 0.0001) self.assertAlmostEqual(root.C.params['x'], 3.)
def test_converge_diverge(self): prob = Problem() prob.root = ConvergeDiverge() prob.root.ln_solver = ExplicitSolver() prob.setup(check=False) prob.run() param_list = ['p.x'] unknown_list = ['comp7.y1'] prob.run() # Make sure value is fine. assert_rel_error(self, prob['comp7.y1'], -102.7, 1e-6) J = prob.calc_gradient(param_list, unknown_list, mode='fwd', return_format='dict') assert_rel_error(self, J['comp7.y1']['p.x'][0][0], -40.75, 1e-6) J = prob.calc_gradient(param_list, unknown_list, mode='rev', return_format='dict') assert_rel_error(self, J['comp7.y1']['p.x'][0][0], -40.75, 1e-6) J = prob.calc_gradient(param_list, unknown_list, mode='fd', return_format='dict') assert_rel_error(self, J['comp7.y1']['p.x'][0][0], -40.75, 1e-6)
def test_fd_options_meta_form(self): class MetaParaboloid(Component): """ Evaluates the equation f(x,y) = (x-3)^2 + xy + (y+4)^2 - 3 """ def __init__(self): super(MetaParaboloid, self).__init__() # Params self.add_param('x1', 1.0, fd_form='forward') self.add_param('x2', 1.0, fd_form='backward') self.add_param('y', 1.0) # Unknowns self.add_output('f_xy', 0.0) def solve_nonlinear(self, params, unknowns, resids): """f(x,y) = (x-3)^2 + xy + (y+4)^2 - 3 Optimal solution (minimum): x = 6.6667; y = -7.3333 """ x1 = params['x1'] x2 = params['x2'] y = params['y'] f_xy = ((x1 - 3.0)**2 + (x2 - 3.0)**2 + (x2 + x2) * y + (y + 4.0)**2 - 3.0) unknowns['f_xy'] = f_xy def jacobian(self, params, unknowns, resids): """Analytical derivatives""" x1 = params['x1'] x2 = params['x2'] y = params['y'] J = {} J['f_xy', 'x1'] = (2.0 * x1 - 6.0 + x2 * y) J['f_xy', 'x2'] = (2.0 * x2 - 6.0 + x1 * y) J['f_xy', 'y'] = (2.0 * y + 8.0 + x1 + x2) return J prob = Problem() prob.root = Group() comp = prob.root.add('comp', MetaParaboloid()) prob.root.add('p11', ParamComp('x1', 15.0)) prob.root.add('p12', ParamComp('x2', 15.0)) prob.root.add('p2', ParamComp('y', 15.0)) prob.root.connect('p11.x1', 'comp.x1') prob.root.connect('p12.x2', 'comp.x2') prob.root.connect('p2.y', 'comp.y') comp.fd_options['force_fd'] = True comp.fd_options['step_size'] = 1e3 params_list = ['p11.x1'] unknowns_list = ['comp.f_xy'] prob.setup(check=False) prob.run() J = prob.calc_gradient(params_list, unknowns_list, return_format='dict') self.assertGreater(J['comp.f_xy']['p11.x1'][0][0], 0.0) J = prob.calc_gradient(['p12.x2'], unknowns_list, return_format='dict') self.assertLess(J['comp.f_xy']['p12.x2'][0][0], 0.0)
from openmdao.core import Problem, Group from seamloads.SEAMLoads import SEAMLoads from seamtower.SEAMTower import SEAMTower from seamrotor.seamrotor import SEAMBladeStructure from seamaero.seam_aep import SEAM_PowerCurve if __name__ == '__main__': prob = Problem(root=Group()) prob.root.add('loads', SEAMLoads(26), promotes=['*']) prob.root.add('tower', SEAMTower(21), promotes=['*']) prob.root.add('blade', SEAMBladeStructure(), promotes=['*']) prob.root.add('power_curve', SEAM_PowerCurve(26), promotes=['*']) prob.setup() # global variables prob['tsr'] = 8.0 prob['rated_power'] = 3. prob['max_tipspeed'] = 62. prob['min_wsp'] = 0. prob['max_wsp'] = 25. prob['project_lifetime'] = 20. prob['rotor_diameter'] = 101.0 prob['hub_height'] = 100.0 prob['tower_bottom_diameter'] = 4. prob['tower_top_diameter'] = 2.
class TestExternalCode(unittest.TestCase): def setUp(self): self.startdir = os.getcwd() self.tempdir = tempfile.mkdtemp(prefix='test_extcode-') os.chdir(self.tempdir) shutil.copy(os.path.join(DIRECTORY, 'external_code_for_testing.py'), os.path.join(self.tempdir, 'external_code_for_testing.py')) self.extcode = ExternalCodeForTesting() self.top = Problem() self.top.root = Group() self.top.root.add('extcode', self.extcode) def tearDown(self): os.chdir(self.startdir) if not os.environ.get('OPENMDAO_KEEPDIRS', False): try: shutil.rmtree(self.tempdir) except OSError: pass def test_normal(self): self.extcode.options['command'] = [ 'python', 'external_code_for_testing.py', 'external_code_output.txt' ] self.extcode.options['external_input_files'] = [ 'external_code_for_testing.py', ] self.extcode.options['external_output_files'] = [ 'external_code_output.txt', ] dev_null = open(os.devnull, 'w') self.top.setup(check=True, out_stream=dev_null) self.top.run() # def test_ls_command(self): # output_filename = 'ls_output.txt' # if sys.platform == 'win32': # self.extcode.options['command'] = ['dir', ] # else: # self.extcode.options['command'] = ['ls', ] # self.extcode.stdout = output_filename # self.extcode.options['external_output_files'] = [output_filename,] # self.top.setup() # self.top.run() # # check the contents of the output file for 'external_code_for_testing.py' # with open(os.path.join(self.tempdir, output_filename), 'r') as out: # file_contents = out.read() # self.assertTrue('external_code_for_testing.py' in file_contents) def test_timeout(self): self.extcode.options['command'] = [ 'python', 'external_code_for_testing.py', 'external_code_output.txt', '--delay', '5' ] self.extcode.options['timeout'] = 1.0 self.extcode.options['external_input_files'] = [ 'external_code_for_testing.py', ] dev_null = open(os.devnull, 'w') self.top.setup(check=True, out_stream=dev_null) try: self.top.run() except RuntimeError as exc: self.assertEqual(str(exc), 'Timed out') self.assertEqual(self.extcode.timed_out, True) else: self.fail('Expected RunInterrupted') def test_badcmd(self): # Set command to nonexistant path. self.extcode.options['command'] = [ 'no-such-command', ] self.top.setup(check=False) try: self.top.run() except ValueError as exc: msg = "The command to be executed, 'no-such-command', cannot be found" self.assertEqual(str(exc), msg) self.assertEqual(self.extcode.return_code, -999999) else: self.fail('Expected ValueError') def test_nullcmd(self): self.extcode.stdout = 'nullcmd.out' self.extcode.stderr = STDOUT self.top.setup(check=False) try: self.top.run() except ValueError as exc: self.assertEqual(str(exc), 'Empty command list') else: self.fail('Expected ValueError') finally: if os.path.exists(self.extcode.stdout): os.remove(self.extcode.stdout) def test_env_vars(self): self.extcode.options['env_vars'] = { 'TEST_ENV_VAR': 'SOME_ENV_VAR_VALUE' } self.extcode.options['command'] = [ 'python', 'external_code_for_testing.py', 'external_code_output.txt', '--write_test_env_var' ] dev_null = open(os.devnull, 'w') self.top.setup(check=True, out_stream=dev_null) self.top.run() # Check to see if output file contains the env var value with open(os.path.join(self.tempdir, 'external_code_output.txt'), 'r') as out: file_contents = out.read() self.assertTrue('SOME_ENV_VAR_VALUE' in file_contents) def test_check_external_outputs(self): # In the external_files list give it a file that will not be created # If check_external_outputs is True, there will be an exception, but since we set it # to False, no exception should be thrown self.extcode.options['check_external_outputs'] = False self.extcode.options['external_input_files'] = [ 'external_code_for_testing.py', ] self.extcode.options['external_output_files'] = [ 'does_not_exist.txt', ] self.extcode.options['command'] = [ 'python', 'external_code_for_testing.py', 'external_code_output.txt' ] self.top.setup(check=False) self.top.run()
def test_basics(self): # create a metamodel component mm = MetaModel() mm.add_param('x1', 0.) mm.add_param('x2', 0.) mm.add_output('y1', 0.) mm.add_output('y2', 0., surrogate=FloatKrigingSurrogate()) mm.default_surrogate = ResponseSurface() # add metamodel to a problem prob = Problem(root=Group()) prob.root.add('mm', mm) prob.setup(check=False) # check that surrogates were properly assigned surrogate = prob.root.unknowns.metadata('mm.y1').get('surrogate') self.assertTrue(isinstance(surrogate, ResponseSurface)) surrogate = prob.root.unknowns.metadata('mm.y2').get('surrogate') self.assertTrue(isinstance(surrogate, FloatKrigingSurrogate)) # populate training data prob['mm.train:x1'] = [1.0, 2.0, 3.0] prob['mm.train:x2'] = [1.0, 3.0, 4.0] prob['mm.train:y1'] = [3.0, 2.0, 1.0] prob['mm.train:y2'] = [1.0, 4.0, 7.0] # run problem for provided data point and check prediction prob['mm.x1'] = 2.0 prob['mm.x2'] = 3.0 self.assertTrue(mm.train) # training will occur before 1st run prob.run() assert_rel_error(self, prob['mm.y1'], 2.0, .00001) assert_rel_error(self, prob['mm.y2'], 4.0, .00001) # run problem for interpolated data point and check prediction prob['mm.x1'] = 2.5 prob['mm.x2'] = 3.5 self.assertFalse(mm.train) # training will not occur before 2nd run prob.run() assert_rel_error(self, prob['mm.y1'], 1.5934, .001) # change default surrogate, re-setup and check that metamodel re-trains mm.default_surrogate = FloatKrigingSurrogate() prob.setup(check=False) surrogate = prob.root.unknowns.metadata('mm.y1').get('surrogate') self.assertTrue(isinstance(surrogate, FloatKrigingSurrogate)) self.assertTrue(mm.train) # training will occur after re-setup mm.warm_restart = True # use existing training data prob['mm.x1'] = 2.5 prob['mm.x2'] = 3.5 prob.run() assert_rel_error(self, prob['mm.y1'], 1.4609, .001)
def example(): config = {'blade': 'seam', 'tower': 'seam'} turbine = FUSEDTurbineCostsModel(config) prob = Problem(turbine) prob.setup() prob['rotor_diameter'] = 126.0 prob['blade_number'] = 3 prob['machine_rating'] = 5000.0 prob['hub_height'] = 90.0 prob['bearing_number'] = 2 prob['crane'] = True prob['offshore'] = False # Rotor force calculations for nacelle inputs maxTipSpd = 80.0 maxEfficiency = 0.90 ratedHubPower = prob['machine_rating'] * 1000. / maxEfficiency rotorSpeed = (maxTipSpd / (0.5 * prob['rotor_diameter'])) * (60.0 / (2 * np.pi)) prob['rotor_torque'] = ratedHubPower / (rotorSpeed * (np.pi / 30)) # other inputs prob['machine_rating'] = 5000.0 prob['blade_number'] = 3 prob['crane'] = True prob['offshore'] = True prob['bearing_number'] = 2 if config['blade'] == 'csm': prob['turbine_class'] = 1 prob['blade_has_carbon'] = False else: prob['tsr'] = 8.0 prob['rated_power'] = 5. prob['max_tipspeed'] = 62. prob['min_wsp'] = 0. prob['max_wsp'] = 25. prob['project_lifetime'] = 20. if config['blade'] == 'seam' or config['tower'] == 'seam': # loads inputs prob['Iref'] = 0.16 prob['F'] = 0.777 prob['wohler_exponent_blade_flap'] = 10.0 prob['wohler_exponent_tower'] = 4. prob['nSigma4fatFlap'] = 1.2 prob['nSigma4fatTower'] = 0.8 prob['dLoad_dU_factor_flap'] = 0.9 prob['dLoad_dU_factor_tower'] = 0.8 prob['lifetime_cycles'] = 1.0e07 prob['EdgeExtDynFact'] = 2.5 prob['EdgeFatDynFact'] = 0.75 prob['WeibullInput'] = True prob['WeiA_input'] = 11. prob['WeiC_input'] = 2.00 prob['Nsections'] = 21 prob['lifetime_cycles'] = 1e7 prob['wohler_exponent_blade_flap'] = 10.0 prob['PMtarget'] = 1.0 if config['blade'] == 'seam': prob['MaxChordrR'] = 0.2 prob['TIF_FLext'] = 1. prob['TIF_EDext'] = 1. prob['TIF_FLfat'] = 1. prob['sc_frac_flap'] = 0.3 prob['sc_frac_edge'] = 0.8 prob['SF_blade'] = 1.1 prob['Slim_ext_blade'] = 200.0 prob['Slim_fat_blade'] = 27 prob['AddWeightFactorBlade'] = 1.2 prob['blade_density'] = 2100. if config['tower'] == 'seam': prob['tower_bottom_diameter'] = 6. prob['tower_top_diameter'] = 3.78 prob['wohler_exponent_tower'] = 4. prob['stress_limit_extreme_tower'] = 235.0 prob['stress_limit_fatigue_tower'] = 14.885 prob['safety_factor_tower'] = 1.5 return prob
def test_simple_matvec_subbed_like_multipoint(self): group = Group() group.add('mycomp', SimpleCompDerivMatVec(), promotes=['x', 'y']) prob = Problem(impl=impl) prob.root = Group() prob.root.add('sub', group, promotes=['*']) prob.root.sub.add('x_param', ParamComp('x', 1.0), promotes=['*']) prob.root.ln_solver = PetscKSP() prob.setup(check=False) prob.run() J = prob.calc_gradient(['x'], ['y'], mode='fwd', return_format='dict') assert_rel_error(self, J['y']['x'][0][0], 2.0, 1e-6) J = prob.calc_gradient(['x'], ['y'], mode='rev', return_format='dict') assert_rel_error(self, J['y']['x'][0][0], 2.0, 1e-6) J = prob.calc_gradient(['x'], ['y'], mode='fd', return_format='dict') assert_rel_error(self, J['y']['x'][0][0], 2.0, 1e-6) J = prob.calc_gradient(['x'], ['y'], mode='fd', return_format='array') assert_rel_error(self, J[0][0], 2.0, 1e-6)