Example #1
0
    def test_multiple_objectives(self):
        sout = StringIO()
        self.top.add('driver', SensitivityDriver())
        self.top.driver.workflow.add(['comp1', 'comp2'])
        self.top.driver.add_parameter(['comp1.x'], low=-100, high=100)
        self.top.driver.add_objective('comp1.z')
        self.top.driver.add_objective('comp2.z')

        self.top.recorders = [JSONCaseRecorder(sout)]
        self.top.run()

        # with open('multiobj.new', 'w') as out:
        #     out.write(sout.getvalue())
        self.verify(sout, 'multiobj.json')
Example #2
0
 def configure(self):
     
     self.add('p1pre', Paraboloid())
     #self.add('p1', Paraboloid())
     self.add('down', Downstream())
     
     self.add('driver', SimpleDriver())
     self.add('sens', SensitivityDriver())
     
     self.driver.add_parameter('p1pre.x', low=-100, high=101)
     self.driver.add_objective('down.y')
     
     self.sens.add_parameter('p1pre.x', low=100, high=101)
     self.sens.add_objective('p1pre.f_xy')
     self.connect('sens.dF', 'down.x')
     
     self.driver.workflow.add(['sens', 'down'])
     self.sens.workflow.add(['p1pre'])
    def __init__(self):
        super(Scalable, self).__init__()

        #three components: d0,d1,d2

        obj = "d0.z0**2+d0.z1**2+d0.z2**2+d0.y_out**2+d1.y_out**2+d2.y_out**2"

        d0_const = "1-d0.y_out/c0 <= 0"
        d1_const = "1-d1.y_out/c1 <= 0"
        d2_const = "1-d2.y_out/c2 <= 0"

        #initial MDA
        mda = self.add("mda", BroydenSolver())
        mda.add_parameter("d0.y_in0", low=-1e99, high=1e99)
        mda.add_parameter("d0.y_in1", low=-1e99, high=1e99)
        mda.add_constraint("d0.y_out=d1.y_in0")
        mda.add_constraint("d0.y_out=d2.y_in0")

        mda.add_parameter("d1.y_in0", low=-1e99, high=1e99)
        mda.add_parameter("d1.y_in1", low=-1e99, high=1e99)
        mda.add_constraint("d1.y_out=d0.y_in0")
        mda.add_constraint("d1.y_out=d2.y_in1")

        mda.add_parameter("d2.y_in0", low=-1e99, high=1e99)
        mda.add_parameter("d2.y_in1", low=-1e99, high=1e99)
        mda.add_constraint("d2.y_out=d0.y_in1")
        mda.add_constraint("d2.y_out=d1.y_in1")

        sa0 = self.add('sa0', SensitivityDriver())
        sa0.differentiator = FiniteDifference()
        sa0.add_parameter('d0.x0', low=-10, high=10)
        sa0.add_parameter('d0.x1', low=-10, high=10)
        sa0.add_parameter('d0.x2', low=-10, high=10)
        sa0.add_objective(obj)
        sa0.add_constraint(d0_const)

        sa1 = self.add('sa1', SensitivityDriver())
        sa1.differentiator = FiniteDifference()
        sa1.add_parameter('d1.x0', low=-10, high=10)
        sa1.add_parameter('d1.x1', low=-10, high=10)
        sa1.add_parameter('d1.x2', low=-10, high=10)
        sa1.add_objective(obj)
        sa1.add_constraint(d1_const)

        sa2 = self.add('sa2', SensitivityDriver())
        sa2.differentiator = FiniteDifference()
        sa2.add_parameter('d0.x0', low=-10, high=10)
        sa2.add_parameter('d0.x1', low=-10, high=10)
        sa2.add_parameter('d0.x2', low=-10, high=10)
        sa2.add_objective(obj)
        sa2.add_constraint(d2_const)

        ssa = self.add('ssa', SensitivityDriver())
        ssa.differentiator = FiniteDifference()
        ssa.add_parameter(("d0.z0", "d1.z0", "d2.z0"), low=-10, high=10)
        ssa.add_parameter(("d0.z1", "d1.z1", "d2.z1"), low=-10, high=10)
        ssa.add_parameter(("d0.z2", "d1.z2", "d2.z2"), low=-10, high=10)
        ssa.add_objective(obj)
        ssa.add_constraint(d0_const)
        ssa.add_constraint(d1_const)
        ssa.add_constraint(d2_const)

        bbopt0 = self.add('bbopt0', CONMINdriver())
        bbopt0.add_parameter('d0_local_des_vars[0]', low=-10, high=10)
        bbopt0.add_parameter('d0_local_des_vars[1]', low=-10, high=10)
        bbopt0.add_parameter('d0_local_des_vars[2]', low=-10, high=10)
        bbopt0.add_objective(
            'sa0.F[0] + sa0.dF[0][0]*(d0_local_des_vars[0]-d0.x0)'
            '+ sa0.dF[0][1]*(d0_local_des_vars[1]-d0.x1)'
            '+ sa0.dF[0][2]*(d0_local_des_vars[2]-d0.x2)')
        bbopt0.add_constraint(
            'sa0.G[0] + sa0.dG[0][0]*(d0_local_des_vars[0]-d0.x0)'
            '+ sa0.dG[0][1]*(d0_local_des_vars[1]-d0.x1)'
            '+ sa0.dG[0][2]*(d0_local_des_vars[2]-d0.x2) <= 0')
        bbopt0.add_constraint(
            '(d0_local_des_vars[0]-d0.x0)<=(percent*d0.x0+.0001)*factor**(mda.exec_count-offset)'
        )
        bbopt0.add_constraint(
            '(d0_local_des_vars[1]-d1.x1)<=(percent*d0.x1+.0001)*factor**(mda.exec_count-offset)'
        )
        bbopt0.add_constraint(
            '(d0_local_des_vars[2]-d2.x2)<=(percent*d0.x2+.0001)*factor**(mda.exec_count-offset)'
        )
        bbopt0.add_constraint(
            '(d0_local_des_vars[0]-d0.x0)>=(-percent*d0.x0-.0001)*factor**(mda.exec_count-offset)'
        )
        bbopt0.add_constraint(
            '(d0_local_des_vars[1]-d1.x1)>=(-percent*d0.x1-.0001)*factor**(mda.exec_count-offset)'
        )
        bbopt0.add_constraint(
            '(d0_local_des_vars[2]-d2.x2)>=(-percent*d0.x2-.0001)*factor**(mda.exec_count-offset)'
        )

        bbopt1 = self.add('bbopt1', CONMINdriver())
        bbopt1.add_parameter('d1_local_des_vars[0]', low=-10, high=10)
        bbopt1.add_parameter('d1_local_des_vars[1]', low=-10, high=10)
        bbopt1.add_parameter('d1_local_des_vars[2]', low=-10, high=10)
        bbopt1.add_objective(
            'sa1.F[0] + sa1.dF[0][0]*(d1_local_des_vars[0]-d1.x0)'
            '+ sa1.dF[0][1]*(d1_local_des_vars[1]-d1.x1)'
            '+ sa1.dF[0][2]*(d1_local_des_vars[2]-d1.x2)')
        bbopt1.add_constraint(
            'sa1.G[0] + sa1.dG[0][0]*(d1_local_des_vars[0]-d1.x0)'
            '+ sa1.dG[0][1]*(d1_local_des_vars[1]-d1.x1)'
            '+ sa1.dG[0][2]*(d1_local_des_vars[2]-d1.x2) <= 0')

        bbopt1.add_constraint(
            '(d1_local_des_vars[0]-d1.x0)<=(percent*d1.x0+.0001)*factor**(mda.exec_count-offset)'
        )
        bbopt1.add_constraint(
            '(d1_local_des_vars[1]-d1.x1)<=(percent*d1.x1+.0001)*factor**(mda.exec_count-offset)'
        )
        bbopt1.add_constraint(
            '(d1_local_des_vars[2]-d1.x2)<=(percent*d1.x2+.0001)*factor**(mda.exec_count-offset)'
        )
        bbopt1.add_constraint(
            '(d1_local_des_vars[0]-d1.x0)>=(-percent*d1.x0-.0001)*factor**(mda.exec_count-offset)'
        )
        bbopt1.add_constraint(
            '(d1_local_des_vars[1]-d1.x1)>=(-percent*d1.x1-.0001)*factor**(mda.exec_count-offset)'
        )
        bbopt1.add_constraint(
            '(d1_local_des_vars[2]-d1.x2)>=(-percent*d1.x2-.0001)*factor**(mda.exec_count-offset)'
        )

        bbopt2 = self.add('bbopt2', CONMINdriver())
        bbopt2.add_parameter('d2_local_des_vars[0]', low=-10, high=10)
        bbopt2.add_parameter('d2_local_des_vars[1]', low=-10, high=10)
        bbopt2.add_parameter('d2_local_des_vars[2]', low=-10, high=10)
        bbopt2.add_objective(
            'sa2.F[0] + sa2.dF[0][0]*(d2_local_des_vars[0]-d2.x0)'
            '+ sa2.dF[0][1]*(d2_local_des_vars[1]-d2.x1)'
            '+ sa2.dF[0][2]*(d2_local_des_vars[2]-d2.x2)')
        bbopt2.add_constraint(
            'sa2.G[0] + sa2.dG[0][0]*(d2_local_des_vars[0]-d2.x0)'
            '+ sa2.dG[0][1]*(d2_local_des_vars[1]-d2.x1)'
            '+ sa2.dG[0][2]*(d2_local_des_vars[2]-d2.x2) <= 0')

        bbopt2.add_constraint(
            '(d2_local_des_vars[0]-d2.x0)<=(percent*d2.x0+.0001)*factor**(mda.exec_count-offset)'
        )
        bbopt2.add_constraint(
            '(d2_local_des_vars[1]-d2.x1)<=(percent*d2.x1+.0001)*factor**(mda.exec_count-offset)'
        )
        bbopt2.add_constraint(
            '(d2_local_des_vars[2]-d2.x2)<=(percent*d2.x2+.0001)*factor**(mda.exec_count-offset)'
        )
        bbopt2.add_constraint(
            '(d2_local_des_vars[0]-d2.x0)>=(-percent*d2.x0-.0001)*factor**(mda.exec_count-offset)'
        )
        bbopt2.add_constraint(
            '(d2_local_des_vars[1]-d2.x1)>=(-percent*d2.x1-.0001)*factor**(mda.exec_count-offset)'
        )
        bbopt2.add_constraint(
            '(d2_local_des_vars[2]-d2.x2)>=(-percent*d2.x2-.0001)*factor**(mda.exec_count-offset)'
        )

        sysopt = self.add('sysopt', CONMINdriver())
        sysopt.add_parameter('global_des_vars[0]', low=-10, high=10)
        sysopt.add_parameter('global_des_vars[1]', low=-10, high=10)
        sysopt.add_parameter('global_des_vars[2]', low=-10, high=10)
        sysopt.add_objective(
            'ssa.F[0] + ssa.dF[0][0]*(global_des_vars[0]-d0.z0)'
            '+ ssa.dF[0][1]*(global_des_vars[1]-d0.z1)'
            '+ ssa.dF[0][2]*(global_des_vars[2]-d0.z2)')
        sysopt.add_constraint(
            'ssa.G[0] + ssa.dG[0][0]*(global_des_vars[0]-d0.z0)'
            '+ ssa.dG[0][1]*(global_des_vars[1]-d0.z1)'
            '+ ssa.dG[0][2]*(global_des_vars[2]-d0.z2) <= 0')
        sysopt.add_constraint(
            'ssa.G[1] + ssa.dG[1][0]*(global_des_vars[0]-d0.z0)'
            '+ ssa.dG[1][1]*(global_des_vars[1]-d0.z1)'
            '+ ssa.dG[1][2]*(global_des_vars[2]-d0.z2) <= 0')
        sysopt.add_constraint(
            'ssa.G[2] + ssa.dG[2][0]*(global_des_vars[0]-d0.z0)'
            '+ ssa.dG[2][1]*(global_des_vars[1]-d0.z1)'
            '+ ssa.dG[2][2]*(global_des_vars[2]-d0.z2) <= 0')

        sysopt.add_constraint(
            '(global_des_vars[0]-d0.z0) >= (percent*d0.z0 +.0001)*factor**(mda.exec_count-offset)'
        )
        sysopt.add_constraint(
            '(global_des_vars[0]-d0.z0) <= (-percent*d0.z0 -.0001)*factor**(mda.exec_count-offset)'
        )
        sysopt.add_constraint(
            '(global_des_vars[1]-d0.z1) >= (percent*d0.z1 +.0001)*factor**(mda.exec_count-offset)'
        )
        sysopt.add_constraint(
            '(global_des_vars[1]-d0.z1) <= (-percent*d0.z1 -.0001)*factor**(mda.exec_count-offset)'
        )
        sysopt.add_constraint(
            '(global_des_vars[2]-d0.z2) >= (percent*d0.z2 +.0001)*factor**(mda.exec_count-offset)'
        )
        sysopt.add_constraint(
            '(global_des_vars[2]-d0.z2) <= (-percent*d0.z2 -.0001)*factor**(mda.exec_count-offset)'
        )

        debug = self.add('debug', DebugComp())
        debug.force_execute = True

        driver = self.add('driver', FixedPointIterator())
        driver.add_parameter('d0.x0', low=-1e99, high=1e99)
        driver.add_parameter('d0.x1', low=-1e99, high=1e99)
        driver.add_parameter('d0.x2', low=-1e99, high=1e99)
        driver.add_constraint('d0_local_des_vars[0]=d0.x0')
        driver.add_constraint('d0_local_des_vars[1]=d0.x1')
        driver.add_constraint('d0_local_des_vars[2]=d0.x2')

        driver.add_parameter('d1.x0', low=-1e99, high=1e99)
        driver.add_parameter('d1.x1', low=-1e99, high=1e99)
        driver.add_parameter('d1.x2', low=-1e99, high=1e99)
        driver.add_constraint('d1_local_des_vars[0]=d1.x0')
        driver.add_constraint('d1_local_des_vars[1]=d1.x1')
        driver.add_constraint('d1_local_des_vars[2]=d1.x2')

        driver.add_parameter('d2.x0', low=-1e99, high=1e99)
        driver.add_parameter('d2.x1', low=-1e99, high=1e99)
        driver.add_parameter('d2.x2', low=-1e99, high=1e99)
        driver.add_constraint('d2_local_des_vars[0]=d2.x0')
        driver.add_constraint('d2_local_des_vars[1]=d2.x1')
        driver.add_constraint('d2_local_des_vars[2]=d2.x2')

        driver.add_parameter(['d0.z0', 'd1.z0', 'd2.z0'], low=-1e99, high=1e99)
        driver.add_parameter(['d0.z1', 'd1.z1', 'd2.z1'], low=-1e99, high=1e99)
        driver.add_parameter(['d0.z2', 'd1.z2', 'd2.z2'], low=-1e99, high=1e99)
        driver.add_constraint('global_des_vars[0]=d0.z0')
        driver.add_constraint('global_des_vars[1]=d0.z1')
        driver.add_constraint('global_des_vars[2]=d0.z2')

        self.driver.workflow.add([
            'mda', 'sa0', 'sa1', 'sa2', 'ssa', 'bbopt0', 'bbopt1', 'bbopt2',
            'sysopt', 'debug'
        ])
Example #4
0
    def configure(self):

        global_dvs = self.parent.get_global_des_vars()
        local_dvs = self.parent.get_local_des_vars_by_comp()
        objective = self.parent.get_objectives().items()[0]
        constraints = self.parent.list_constraints()
        coupling = self.parent.list_coupling_vars()

        self.parent.add('driver', FixedPointIterator())
        self.parent.driver.max_iteration = 50
        self.parent.driver.tolerance = .005

        #set initial values
        for comp, param in global_dvs:
            param.initialize(self.parent)

        for comp, local_params in local_dvs.iteritems():
            for param in local_params:
                param.initialize(self.parent)

        for couple in coupling.values():
            couple.indep.set(couple.start)

        initial_conditions = [param.start for comp, param in global_dvs]
        self.parent.add_trait('global_des_vars',
                              Array(initial_conditions, iotype="in"))
        for i, (comps, param) in enumerate(global_dvs):
            targets = param.targets
            self.parent.driver.add_parameter(targets,
                                             low=param.low,
                                             high=param.high,
                                             start=param.start)
            self.parent.driver.add_constraint("global_des_vars[%d]=%s" %
                                              (i, targets[0]))

        for comp, local_params in local_dvs.iteritems():
            initial_conditions = [param.start for param in local_params]
            self.parent.add_trait('%s_local_des_vars' % comp,
                                  Array(initial_conditions, iotype="in"))
            for i, param in enumerate(local_params):
                self.parent.driver.add_parameter(param.targets,
                                                 low=param.low,
                                                 high=param.high,
                                                 start=param.start)
                self.parent.driver.add_constraint('%s_local_des_vars[%d]=%s' %
                                                  (comp, i, param.targets[0]))

        # Multidisciplinary Analysis
        mda = self.parent.add('mda', BroydenSolver())
        for couple in coupling.values():
            mda.add_parameter(couple.indep.target)
            mda.add_constraint("%s=%s" %
                               (couple.indep.target, couple.dep.target))

        #Global Sensitivity Analysis
        ssa = self.parent.add("ssa", SensitivityDriver())
        ssa.workflow.add("mda")
        ssa.default_stepsize = 1.0e-6
        ssa.add_objective(objective[1].text, name=objective[0])
        for comps, param in global_dvs:
            ssa.add_parameter(param.targets, low=param.low, high=param.high)
        for constraint in constraints:
            ssa.add_constraint(constraint)

        #discipline sensitivity analyses
        sa_s = []
        for comp, local_params in local_dvs.iteritems():
            sa = self.parent.add('sa_%s' % comp, SensitivityDriver())
            sa.default_stepsize = 1.0e-6
            sa_s.append('sa_%s' % comp)
            for param in local_params:
                sa.add_parameter(param.targets,
                                 low=param.low,
                                 high=param.high,
                                 fd_step=.001)
            for constraint in constraints:
                sa.add_constraint(constraint)
            sa.add_objective(objective[1].text, name=objective[0])

        #Linear System Optimizations

        # Discipline Optimization
        # (Only discipline1 has an optimization input)

        bbopts = []
        for comp, local_params in local_dvs.iteritems():
            bbopt = self.parent.add('bbopt_%s' % comp, SLSQPdriver())
            bbopt.iprint = 0

            bbopts.append('bbopt_%s' % comp)

            x_store = "%s_local_des_vars" % comp
            delta_x = []
            df = []
            dg = []

            for i, param in enumerate(local_params):
                x_store_i = "%s[%d]" % (x_store, i)
                bbopt.add_parameter(x_store_i,
                                    low=param.low,
                                    high=param.high,
                                    start=param.start)
                dx = "(%s-%s)" % (x_store_i, param.targets[0])
                delta_x.append(dx)
                #bbopt.add_constraint("%s < %f*%s" %(dx, .2, param.targets[0]))
                #bbopt.add_constraint("%s > -%f*%s "%(dx, .2, param.targets[0]))
                bbopt.add_constraint("%s < .5" % (dx, ))
                bbopt.add_constraint("%s > -.5" % (dx, ))

                df.append("sa_%s.dF[0][%d]*%s" % (comp, i, dx))

            #build the linear constraint string for each constraint
            for j, const in enumerate(constraints):
                dg_j = [
                    "sa_%s.dG[%d][%d]*%s" % (comp, j, i, x)
                    for i, x in enumerate(delta_x)
                ]
                constraint_parts = ["sa_%s.G[%d]" % (comp, j)]
                constraint_parts.extend(dg_j)
                lin_constraint = "%s < 0" % "+".join(constraint_parts)
                bbopt.add_constraint(lin_constraint)

            #build the linear objective string
            objective_parts = ["sa_%s.F[0]" % comp]
            objective_parts.extend(df)
            lin_objective = "+".join(objective_parts)
            bbopt.add_objective(lin_objective)

        # Global Optimization
        delta_z = []
        df = []
        dg = []

        sysopt = self.parent.add('sysopt', SLSQPdriver())
        sysopt.recorders = self.data_recorders
        sysopt.iprint = 0

        for i, (comps, param) in enumerate(global_dvs):
            z_store = "global_des_vars[%d]" % i
            target = list(param.targets)[0]
            sysopt.add_parameter(z_store,
                                 low=param.low,
                                 high=param.high,
                                 start=param.start)
            dz = "(%s-%s)" % (z_store, target)
            delta_z.append(dz)
            #sysopt.add_constraint("%s < %f*%s" % (dz, .1, target))
            #sysopt.add_constraint("%s > -%f*%s" % (dz, .1, target))
            sysopt.add_constraint("%s < .5" % (dz, ))
            sysopt.add_constraint("%s > -.5" % (dz, ))

            df.append("ssa.dF[0][%d]*%s" % (i, dz))
            dg_j = [
                "ssa.dG[%d][%d]*%s" % (j, i, dz)
                for j, const in enumerate(constraints)
            ]
            dg.append(dg_j)

        objective_parts = ["ssa.F[0]"]
        objective_parts.extend(df)
        lin_objective = "+".join(objective_parts)
        sysopt.add_objective(lin_objective)

        #build the linear constraint string for each constraint
        for j, const in enumerate(constraints):
            dg_j = [
                "ssa.dG[%d][%d]*%s" % (j, i, x) for i, x in enumerate(delta_z)
            ]
            constraint_parts = ["ssa.G[%d]" % j]
            constraint_parts.extend(dg_j)
            lin_constraint = "%s < 0" % "+".join(constraint_parts)
            sysopt.add_constraint(lin_constraint)

        #self.parent.driver.workflow.add("mda")
        self.parent.driver.workflow.add(sa_s)
        if global_dvs:
            self.parent.driver.workflow.add("ssa")
        self.parent.driver.workflow.add(bbopts)
        if global_dvs:
            self.parent.driver.workflow.add("sysopt")
Example #5
0
    def configure(self):

        global_dvs = self.parent.get_global_des_vars()
        local_dvs = self.parent.get_local_des_vars_by_comp()
        objective = self.parent.get_objectives().items()[0]
        constraints = self.parent.list_constraints()
        coupling = self.parent.get_coupling_vars()

        self.parent.add('driver', FixedPointIterator())
        self.parent.driver.max_iteration = 50
        self.parent.driver.tolerance = .001

        initial_conditions = [
            self.parent.get(param.target) for comp, param in global_dvs
        ]
        self.parent.add_trait('global_des_vars', Array(initial_conditions))
        for i, (comps, param) in enumerate(global_dvs):
            targets = param.targets
            self.parent.driver.add_parameter(targets,
                                             low=param.low,
                                             high=param.high)
            self.parent.driver.add_constraint("global_des_vars[%d]=%s" %
                                              (i, targets[0]))

        for comp, local_params in local_dvs.iteritems():
            initial_conditions = [
                self.parent.get(param.targets[0]) for param in local_params
            ]
            self.parent.add_trait('%s_local_des_vars' % comp,
                                  Array(initial_conditions))
            for i, param in enumerate(local_params):
                self.parent.driver.add_parameter(param.targets,
                                                 low=param.low,
                                                 high=param.high)
                self.parent.driver.add_constraint('%s_local_des_vars[%d]=%s' %
                                                  (comp, i, param.targets[0]))

        # Multidisciplinary Analysis
        mda = self.parent.add('mda', BroydenSolver())
        self.parent.force_execute = True
        for key, couple in coupling.iteritems():
            mda.add_parameter(couple.indep.target, low=-9.e99, high=9.e99)
            mda.add_constraint("%s=%s" %
                               (couple.indep.target, couple.dep.target))

        #Global Sensitivity Analysis
        ssa = self.parent.add("ssa", SensitivityDriver())
        ssa.workflow.add("mda")
        ssa.differentiator = FiniteDifference()
        ssa.default_stepsize = 1.0e-6
        ssa.force_execute = True
        ssa.add_objective(objective[1].text, name=objective[0])
        for comps, param in global_dvs:

            ssa.add_parameter(param.targets, low=param.low, high=param.high)
        for constraint in constraints:
            ssa.add_constraint(constraint)

        #discipline sensitivity analyses
        sa_s = []
        for comp, local_params in local_dvs.iteritems():
            sa = self.parent.add('sa_%s' % comp, SensitivityDriver())
            sa.default_stepsize = 1.0e-6
            sa.force_execute = True
            sa_s.append('sa_%s' % comp)
            for param in local_params:
                sa.add_parameter(param.targets,
                                 low=param.low,
                                 high=param.high,
                                 fd_step=.001)
            for constraint in constraints:
                sa.add_constraint(constraint)
            sa.add_objective(objective[1].text, name=objective[0])
            sa.differentiator = FiniteDifference()

        #Linear System Optimizations

        # Discipline Optimization
        # (Only discipline1 has an optimization input)
        delta_x = []
        df = []
        dg = []

        bbopts = []
        for comp, local_params in local_dvs.iteritems():
            bbopt = self.parent.add('bbopt_%s' % comp, CONMINdriver())
            bbopt.linobj = True
            bbopt.iprint = 0
            bbopt.force_execute = True
            bbopts.append('bbopt_%s' % comp)

            x_store = "%s_local_des_vars" % comp

            for i, param in enumerate(local_params):
                x_store_i = "%s[%d]" % (x_store, i)
                bbopt.add_parameter(x_store_i, low=param.low, high=param.high)
                dx = "(%s-%s)" % (x_store_i, param.targets[0])
                delta_x.append(dx)
                move_limit = (param.high - param.low) * 20.0 / 100.0
                bbopt.add_constraint("%s < %f" % (dx, move_limit))
                bbopt.add_constraint("%s > -%f" % (dx, move_limit))

                df.append("sa_%s.dF[0][%d]*%s" % (comp, i, dx))

            #build the linear constraint string for each constraint
            for j, const in enumerate(constraints):
                dg_j = [
                    "sa_%s.dG[%d][%d]*%s" % (comp, j, i, x)
                    for i, x in enumerate(delta_x)
                ]
                constraint_parts = ["sa_%s.G[%d]" % (comp, j)]
                constraint_parts.extend(dg_j)
                lin_constraint = "%s < 0" % "+".join(constraint_parts)
                bbopt.add_constraint(lin_constraint)

            #build the linear objective string
            objective_parts = ["sa_%s.F[0]" % comp]
            objective_parts.extend(df)
            lin_objective = "+".join(objective_parts)
            bbopt.add_objective(lin_objective)

        # Global Optimization
        delta_z = []
        df = []
        dg = []

        sysopt = self.parent.add('sysopt', CONMINdriver())
        sysopt.linobj = True
        sysopt.iprint = 0
        sysopt.force_execute = True
        for i, (comps, param) in enumerate(global_dvs):
            z_store = "global_des_vars[%d]" % i
            target = list(param.targets)[0]
            sysopt.add_parameter(z_store, low=param.low, high=param.high)
            dz = "(%s-%s)" % (z_store, target)
            delta_z.append(dz)
            move_limit = (param.high - param.low) * 20.00 / 100.0
            sysopt.add_constraint("%s < %f" % (dz, move_limit))
            sysopt.add_constraint("%s > -%f" % (dz, move_limit))

            df.append("ssa.dF[0][%d]*%s" % (i, dz))
            dg_j = [
                "ssa.dG[%d][%d]*%s" % (j, i, dz)
                for j, const in enumerate(constraints)
            ]
            dg.append(dg_j)

        objective_parts = ["ssa.F[0]"]
        objective_parts.extend(df)
        lin_objective = "+".join(objective_parts)
        sysopt.add_objective(lin_objective)

        #build the linear constraint string for each constraint
        for j, const in enumerate(constraints):
            dg_j = [
                "ssa.dG[%d][%d]*%s" % (j, i, x) for i, x in enumerate(delta_z)
            ]
            constraint_parts = ["ssa.G[%d]" % j]
            constraint_parts.extend(dg_j)
            lin_constraint = "%s < 0" % "+".join(constraint_parts)
            sysopt.add_constraint(lin_constraint)

        self.parent.driver.workflow = SequentialWorkflow()
        self.parent.driver.workflow.add("ssa")
        self.parent.driver.workflow.add(sa_s)
        self.parent.driver.workflow.add(bbopts)
        self.parent.driver.workflow.add("sysopt")
Example #6
0
    def configure(self):
        """ Creates a new Assembly with this problem
        
        Optimal Design at (1.9776, 0, 0)
        
        Optimal Objective = 3.18339"""

        # Disciplines
        self.add('dis1', sellar.Discipline1())
        self.add('dis2', sellar.Discipline2())

        objective = '(dis1.x1)**2 + dis1.z2 + dis1.y1 + exp(-dis2.y2)'
        constraint1 = 'dis1.y1 > 3.16'
        constraint2 = 'dis2.y2 < 24.0'

        # Top level is Fixed-Point Iteration
        self.add('driver', FixedPointIterator())
        self.driver.add_parameter('dis1.x1', low=0.0, high=10.0, start=1.0)
        self.driver.add_parameter(['dis1.z1', 'dis2.z1'],
                                  low=-10.0,
                                  high=10.0,
                                  start=5.0)
        self.driver.add_parameter(['dis1.z2', 'dis2.z2'],
                                  low=0.0,
                                  high=10.0,
                                  start=2.0)
        self.driver.add_constraint('x1_store = dis1.x1')
        self.driver.add_constraint('z_store[0] = dis1.z1')
        self.driver.add_constraint('z_store[1] = dis1.z2')
        self.driver.max_iteration = 50
        self.driver.tolerance = .001

        # Multidisciplinary Analysis
        self.add('mda', BroydenSolver())
        self.mda.add_parameter('dis1.y2', low=-9.e99, high=9.e99, start=0.0)
        self.mda.add_constraint('dis2.y2 = dis1.y2')
        self.mda.add_parameter('dis2.y1', low=-9.e99, high=9.e99, start=3.16)
        self.mda.add_constraint('dis2.y1 = dis1.y1')

        # Discipline 1 Sensitivity Analysis
        self.add('sa_dis1', SensitivityDriver())
        self.sa_dis1.workflow.add(['dis1'])
        self.sa_dis1.add_parameter('dis1.x1', low=0.0, high=10.0, fd_step=.001)
        self.sa_dis1.add_constraint(constraint1)
        self.sa_dis1.add_constraint(constraint2)
        self.sa_dis1.add_objective(objective, name='obj')

        # Discipline 2 Sensitivity Analysis
        # dis2 has no local parameter, so there is no need to treat it as
        # a subsystem.

        # System Level Sensitivity Analysis
        # Note, we cheat here and run an MDA instead of solving the
        # GSE equations. Have to put this on the TODO list.
        self.add('ssa', SensitivityDriver())
        self.ssa.workflow.add(['mda'])
        self.ssa.add_parameter(['dis1.z1', 'dis2.z1'], low=-10.0, high=10.0)
        self.ssa.add_parameter(['dis1.z2', 'dis2.z2'], low=0.0, high=10.0)
        self.ssa.add_constraint(constraint1)
        self.ssa.add_constraint(constraint2)
        self.ssa.add_objective(objective, name='obj')

        # Discipline Optimization
        # (Only discipline1 has an optimization input)
        self.add('bbopt1', CONMINdriver())
        self.bbopt1.add_parameter('x1_store', low=0.0, high=10.0, start=1.0)
        self.bbopt1.add_objective(
            'sa_dis1.F[0] + sa_dis1.dF[0][0]*(x1_store-dis1.x1)')
        self.bbopt1.add_constraint(
            'sa_dis1.G[0] + sa_dis1.dG[0][0]*(x1_store-dis1.x1) < 0')
        #this one is technically unncessary
        self.bbopt1.add_constraint(
            'sa_dis1.G[1] + sa_dis1.dG[1][0]*(x1_store-dis1.x1) < 0')

        self.bbopt1.add_constraint('(x1_store-dis1.x1)<.5')
        self.bbopt1.add_constraint('(x1_store-dis1.x1)>-.5')
        self.bbopt1.iprint = 0
        self.bbopt1.linobj = True

        # Global Optimization
        self.add('sysopt', CONMINdriver())
        self.sysopt.add_parameter('z_store[0]',
                                  low=-10.0,
                                  high=10.0,
                                  start=5.0)
        self.sysopt.add_parameter('z_store[1]', low=0.0, high=10.0, start=2.0)
        self.sysopt.add_objective(
            'ssa.F[0]+ ssa.dF[0][0]*(z_store[0]-dis1.z1) + ssa.dF[0][1]*(z_store[1]-dis1.z2)'
        )

        self.sysopt.add_constraint(
            'ssa.G[0] + ssa.dG[0][0]*(z_store[0]-dis1.z1) + ssa.dG[0][1]*(z_store[1]-dis1.z2) < 0'
        )
        self.sysopt.add_constraint(
            'ssa.G[1] + ssa.dG[1][0]*(z_store[0]-dis1.z1) + ssa.dG[1][1]*(z_store[1]-dis1.z2) < 0'
        )

        self.sysopt.add_constraint('z_store[0]-dis1.z1<.5')
        self.sysopt.add_constraint('z_store[0]-dis1.z1>-.5')
        self.sysopt.add_constraint('z_store[1]-dis1.z2<.5')
        self.sysopt.add_constraint('z_store[1]-dis1.z2>-.5')
        self.sysopt.iprint = 0
        self.sysopt.linobj = True

        self.driver.workflow.add(['ssa', 'sa_dis1', 'bbopt1', 'sysopt'])