def test_get_extension_by_model(self):
     self.assertIsNone(get_extension_by_model(DummyModel()))
     with self.assertRaisesRegex(ValueError, 'No extension registered which can handle model:'):
         get_extension_by_model(DummyModel(), raise_if_no_extension=True)
     register_extension(DummyExtension1)
     self.assertIsInstance(get_extension_by_model(DummyModel()), DummyExtension1)
     register_extension(DummyExtension2)
     self.assertIsInstance(get_extension_by_model(DummyModel()), DummyExtension1)
     register_extension(DummyExtension1)
     with self.assertRaisesRegex(
         ValueError,
         'Multiple extensions registered which can handle model:',
     ):
         get_extension_by_model(DummyModel())
Example #2
0
 def test_get_extension_by_flow(self):
     self.assertIsNone(get_extension_by_flow(DummyFlow()))
     with self.assertRaisesRegex(
             ValueError, "No extension registered which can handle flow:"):
         get_extension_by_flow(DummyFlow(), raise_if_no_extension=True)
     register_extension(DummyExtension1)
     self.assertIsInstance(get_extension_by_flow(DummyFlow()),
                           DummyExtension1)
     register_extension(DummyExtension2)
     self.assertIsInstance(get_extension_by_flow(DummyFlow()),
                           DummyExtension1)
     register_extension(DummyExtension1)
     with self.assertRaisesRegex(
             ValueError,
             "Multiple extensions registered which can handle flow:",
     ):
         get_extension_by_flow(DummyFlow())
Example #3
0
                'oml:value': value,
                'oml:component': flow.flow_id
            })

        return parameter_settings

    def instantiate_model_from_hpo_class(
        self,
        model: Any,
        trace_iteration: OpenMLTraceIteration,
    ) -> Any:
        """Instantiate a ``base_estimator`` which can be searched over by the hyperparameter
        optimization model (UNUSED)

        Parameters
        ----------
        model : Any
            A hyperparameter optimization model which defines the model to be instantiated.
        trace_iteration : OpenMLTraceIteration
            Describing the hyperparameter settings to instantiate.

        Returns
        -------
        Any
        """

        return model


register_extension(OnnxExtension)
        flow_structure = flow.get_structure('name')
        if openml_parameter.flow_name not in flow_structure:
            raise ValueError('Obtained OpenMLParameter and OpenMLFlow do not correspond. ')
        name = openml_parameter.flow_name  # for PEP8
        return '__'.join(flow_structure[name] + [openml_parameter.parameter_name])

    def instantiate_model_from_hpo_class(
            self,
            model: Any,
            trace_iteration: OpenMLTraceIteration,
    ) -> Any:
        """Instantiate a ``base_estimator`` which can be searched over by the hyperparameter
        optimization model (UNUSED)

        Parameters
        ----------
        model : Any
            A hyperparameter optimization model which defines the model to be instantiated.
        trace_iteration : OpenMLTraceIteration
            Describing the hyperparameter settings to instantiate.

        Returns
        -------
        Any
        """

        return model


register_extension(KerasExtension)
Example #5
0
# License: BSD 3-Clause

from .extension import SklearnExtension
from openml.extensions import register_extension

__all__ = ['SklearnExtension']

register_extension(SklearnExtension)
Example #6
0
from .extension import PytorchExtension
from . import config
from . import layers
from openml.extensions import register_extension

__all__ = ['PytorchExtension', 'config', 'layers']

register_extension(PytorchExtension)
Example #7
0
from .extension import MXNetExtension
from .config import Config
from openml.extensions import register_extension

__all__ = ['MXNetExtension', 'Config']

register_extension(MXNetExtension)
Example #8
0
import os
from .extension import TensorflowExtension
from openml.extensions import register_extension
from . import config
__all__ = ['TensorflowExtension', 'config']

register_extension(TensorflowExtension)
Example #9
0
import os
from .extension import TFExtension
from openml.extensions import register_extension

__all__ = ['TFExtension']

register_extension(TFExtension)