def __init__(self): super().__init__() if self.weights is not None: caf_weights = [] for bone in WHOLEBODY_SKELETON: caf_weights.append( max(self.weights[bone[0] - 1], self.weights[bone[1] - 1])) w_np = np.array(caf_weights) caf_weights = list(w_np / np.sum(w_np) * len(caf_weights)) else: caf_weights = None cif = headmeta.Cif('cif', 'wholebodykp', keypoints=WHOLEBODY_KEYPOINTS, sigmas=WHOLEBODY_SIGMAS, pose=WHOLEBODY_STANDING_POSE, draw_skeleton=WHOLEBODY_SKELETON, score_weights=WHOLEBODY_SCORE_WEIGHTS, training_weights=self.weights) caf = headmeta.Caf('caf', 'wholebodykp', keypoints=WHOLEBODY_KEYPOINTS, sigmas=WHOLEBODY_SIGMAS, pose=WHOLEBODY_STANDING_POSE, skeleton=WHOLEBODY_SKELETON, training_weights=caf_weights) cif.upsample_stride = self.upsample_stride caf.upsample_stride = self.upsample_stride self.head_metas = [cif, caf]
def __init__(self): super().__init__() cif = headmeta.Cif('cif', 'apollo', keypoints=self.CAR_KEYPOINTS, sigmas=self.CAR_SIGMAS, pose=self.CAR_POSE, draw_skeleton=self.CAR_SKELETON, score_weights=self.CAR_SCORE_WEIGHTS) caf = headmeta.Caf('caf', 'apollo', keypoints=self.CAR_KEYPOINTS, sigmas=self.CAR_SIGMAS, pose=self.CAR_POSE, skeleton=self.CAR_SKELETON) cif.upsample_stride = self.upsample_stride caf.upsample_stride = self.upsample_stride self.head_metas = [cif, caf]