def ProcessHandler(stg): # setting up the path and grabbing the files analysis_path = tools.create_directory(stg['DP']) task = tools.Multiprocesser(data_dir=stg['DP'], pattern_a='frame*.jpg') # finding background and reflections in the images if stg['BR'] == 'on': print('preprocessing:') bg_a, bg_b = task.find_background(50, 10, 6) reflection = tools.mark_reflection(180, task.files_a) #tools.imsave(os.path.join(stg['DP'], 'Analysis/reflection.jpg'), reflection) else: bg_a, bg_b, reflection = tools.imread( os.path.join(stg['DP'], 'avg.jpg')), None, None #tools.imsave(os.path.join(stg['DP'], 'Analysis/background.jpg'), bg_a) # start processing data print('main process:\nprocessing images...') #task.n_files = 6 main_process = partial(ProcessPIV, bga=bg_a, bgb=bg_b, reflection=reflection, stg=stg) task.run(func=main_process, n_cpus=6) print('- done processing') ''' fig, ax = plt.subplots(2,2) img = tools.imread(task.files_a[0]) bg = bg_a ax[0,0].imshow(img, cmap='gray') ax[0,1].imshow(bg, cmap='gray') ax[1,0].imshow(reflection, cmap='gray') img = img - bg img[reflection==255] = 0 ax[1,1].imshow(img, cmap='gray') plt.show() ''' return bg_a
def piv(settings): # '''the func fuction is the "frame" in which the PIV evaluation is done''' def func(args): """A function to process each image pair.""" # this line is REQUIRED for multiprocessing to work # always use it in your custom function file_a, file_b, counter = args # counter2=str(counter2) ##################### # Here goes you code ##################### ' read images into numpy arrays' frame_a = tools.imread(os.path.join(settings.filepath_images, file_a)) frame_b = tools.imread(os.path.join(settings.filepath_images, file_b)) ## Miguel: I just had a quick look, and I do not understand the reason for this step. # I propose to remove it. #frame_a = (frame_a*1024).astype(np.int32) #frame_b = (frame_b*1024).astype(np.int32) ' crop to ROI' if settings.ROI == 'full': frame_a = frame_a frame_b = frame_b else: frame_a = frame_a[settings.ROI[0]:settings.ROI[1], settings.ROI[2]:settings.ROI[3]] frame_b = frame_b[settings.ROI[0]:settings.ROI[1], settings.ROI[2]:settings.ROI[3]] if settings.dynamic_masking_method == 'edge' or 'intensity': frame_a = preprocess.dynamic_masking( frame_a, method=settings.dynamic_masking_method, filter_size=settings.dynamic_masking_filter_size, threshold=settings.dynamic_masking_threshold) frame_b = preprocess.dynamic_masking( frame_b, method=settings.dynamic_masking_method, filter_size=settings.dynamic_masking_filter_size, threshold=settings.dynamic_masking_threshold) '''%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%''' 'first pass' x, y, u, v, sig2noise_ratio = first_pass( frame_a, frame_b, settings.windowsizes[0], settings.overlap[0], settings.iterations, correlation_method=settings.correlation_method, subpixel_method=settings.subpixel_method, do_sig2noise=settings.extract_sig2noise, sig2noise_method=settings.sig2noise_method, sig2noise_mask=settings.sig2noise_mask, ) 'validation using gloabl limits and std and local median' '''MinMaxU : two elements tuple sets the limits of the u displacment component Used for validation. MinMaxV : two elements tuple sets the limits of the v displacment component Used for validation. std_threshold : float sets the threshold for the std validation median_threshold : float sets the threshold for the median validation filter_method : string the method used to replace the non-valid vectors Methods: 'localmean', 'disk', 'distance', max_filter_iteration : int maximum of filter iterations to replace nans filter_kernel_size : int size of the kernel used for the filtering''' mask = np.full_like(x, False) if settings.validation_first_pass == True: u, v, mask_g = validation.global_val(u, v, settings.MinMax_U_disp, settings.MinMax_V_disp) u, v, mask_s = validation.global_std( u, v, std_threshold=settings.std_threshold) u, v, mask_m = validation.local_median_val( u, v, u_threshold=settings.median_threshold, v_threshold=settings.median_threshold, size=settings.median_size) if settings.extract_sig2noise == True and settings.iterations == 1 and settings.do_sig2noise_validation == True: u, v, mask_s2n = validation.sig2noise_val( u, v, sig2noise_ratio, threshold=settings.sig2noise_threshold) mask = mask + mask_g + mask_m + mask_s + mask_s2n else: mask = mask + mask_g + mask_m + mask_s 'filter to replace the values that where marked by the validation' if settings.iterations > 1: u, v = filters.replace_outliers( u, v, method=settings.filter_method, max_iter=settings.max_filter_iteration, kernel_size=settings.filter_kernel_size) 'adding masks to add the effect of all the validations' if settings.smoothn == True: u, dummy_u1, dummy_u2, dummy_u3 = smoothn.smoothn( u, s=settings.smoothn_p) v, dummy_v1, dummy_v2, dummy_v3 = smoothn.smoothn( v, s=settings.smoothn_p) elif settings.iterations == 1 and settings.replace_vectors == True: u, v = filters.replace_outliers( u, v, method=settings.filter_method, max_iter=settings.max_filter_iteration, kernel_size=settings.filter_kernel_size) 'adding masks to add the effect of all the validations' if settings.smoothn == True: u, v = filters.replace_outliers( u, v, method=settings.filter_method, max_iter=settings.max_filter_iteration, kernel_size=settings.filter_kernel_size) u, dummy_u1, dummy_u2, dummy_u3 = smoothn.smoothn( u, s=settings.smoothn_p) v, dummy_v1, dummy_v2, dummy_v3 = smoothn.smoothn( v, s=settings.smoothn_p) i = 1 'all the following passes' for i in range(2, settings.iterations + 1): x, y, u, v, sig2noise_ratio, mask = multipass_img_deform( frame_a, frame_b, settings.windowsizes[i - 1], settings.overlap[i - 1], settings.iterations, i, x, y, u, v, correlation_method=settings.correlation_method, subpixel_method=settings.subpixel_method, do_sig2noise=settings.extract_sig2noise, sig2noise_method=settings.sig2noise_method, sig2noise_mask=settings.sig2noise_mask, MinMaxU=settings.MinMax_U_disp, MinMaxV=settings.MinMax_V_disp, std_threshold=settings.std_threshold, median_threshold=settings.median_threshold, median_size=settings.median_size, filter_method=settings.filter_method, max_filter_iteration=settings.max_filter_iteration, filter_kernel_size=settings.filter_kernel_size, interpolation_order=settings.interpolation_order) # If the smoothing is active, we do it at each pass if settings.smoothn == True: u, dummy_u1, dummy_u2, dummy_u3 = smoothn.smoothn( u, s=settings.smoothn_p) v, dummy_v1, dummy_v2, dummy_v3 = smoothn.smoothn( v, s=settings.smoothn_p) '''%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%''' if settings.extract_sig2noise == True and i == settings.iterations and settings.iterations != 1 and settings.do_sig2noise_validation == True: u, v, mask_s2n = validation.sig2noise_val( u, v, sig2noise_ratio, threshold=settings.sig2noise_threshold) mask = mask + mask_s2n if settings.replace_vectors == True: u, v = filters.replace_outliers( u, v, method=settings.filter_method, max_iter=settings.max_filter_iteration, kernel_size=settings.filter_kernel_size) 'pixel/frame->pixel/sec' u = u / settings.dt v = v / settings.dt 'scales the results pixel-> meter' x, y, u, v = scaling.uniform(x, y, u, v, scaling_factor=settings.scaling_factor) 'save to a file' save(x, y, u, v, sig2noise_ratio, mask, os.path.join(save_path, 'field_A%03d.txt' % counter), delimiter='\t') 'some messages to check if it is still alive' 'some other stuff that one might want to use' if settings.show_plot == True or settings.save_plot == True: plt.close('all') plt.ioff() Name = os.path.join(save_path, 'Image_A%03d.png' % counter) display_vector_field(os.path.join(save_path, 'field_A%03d.txt' % counter), scale=settings.scale_plot) if settings.save_plot == True: plt.savefig(Name) if settings.show_plot == True: plt.show() print('Image Pair ' + str(counter + 1)) 'Below is code to read files and create a folder to store the results' save_path = os.path.join( settings.save_path, 'Open_PIV_results_' + str(settings.windowsizes[settings.iterations - 1]) + '_' + settings.save_folder_suffix) if not os.path.exists(save_path): os.makedirs(save_path) task = tools.Multiprocesser(data_dir=settings.filepath_images, pattern_a=settings.frame_pattern_a, pattern_b=settings.frame_pattern_b) task.run(func=func, n_cpus=1)
frame_a = tools.imread(os.path.join(path, file_a)) frame_b = tools.imread(os.path.join(path, file_b)) frame_a = (frame_a * 1024).astype(np.int32) frame_b = (frame_b * 1024).astype(np.int32) # process image pair with extended search area piv algorithm. u, v, sig2noise = pyprocess.extended_search_area_piv( frame_a, frame_b, \ window_size=64, overlap=32, dt=0.02, search_area_size=128, sig2noise_method='peak2peak') u, v, mask = validation.sig2noise_val(u, v, sig2noise, threshold=1.5) u, v = filters.replace_outliers(u, v, method='localmean', max_iter=10, kernel_size=2) # get window centers coordinates x, y = pyprocess.get_coordinates(image_size=frame_a.shape, search_area_size=128, overlap=32) # save to a file tools.save(x, y, u, v, mask, 'test2_%03d.txt' % counter) tools.display_vector_field('test2_%03d.txt' % counter) path = os.path.dirname(os.path.abspath(__file__)) path = os.path.join(path, '../test2/') task = tools.Multiprocesser(data_dir=path, pattern_a='2image_*0.tif', pattern_b='2image_*1.tif') task.run(func=func, n_cpus=1)
def process(args): file_a, file_b, counter = args # read images into numpy arrays frame_a = tools.imread(file_a) frame_b = tools.imread(file_b) print(counter + 1) # process image pair with piv algorithm. u, v, sig2noise = pyprocess.extended_search_area_piv( frame_a, frame_b, \ window_size=32, overlap=16, dt=0.0015, search_area_size=32, sig2noise_method='peak2peak') x, y = pyprocess.get_coordinates(image_size=frame_a.shape, window_size=32, overlap=16) u, v, mask1 = validation.sig2noise_val(u, v, sig2noise, threshold=1.0) u, v, mask2 = validation.global_val(u, v, (-2000, 2000), (-2000, 4000)) u, v, mask3 = validation.local_median_val(u, v, 400, 400, size=2) #u, v, mask4 = validation.global_std(u, v, std_threshold=3) mask = mask1 | mask2 | mask3 #u, v = filters.replace_outliers( u, v, method='localmean', max_iter=10, kernel_size=2) save_file = tools.create_path(file_a, 'Analysis') tools.save(x, y, u, v, mask, save_file + '.dat') run_path = '' raw_data_path = os.path.join(run_path, 'Images') Analysis_path = tools.create_directory(run_path) task = tools.Multiprocesser(data_dir=raw_data_path, pattern_a='*.bmp') task.run(func=process, n_cpus=1)