def test_invert_and_piv(): """ Test windef.piv with invert option """ settings = windef.Settings() 'Data related settings' # Folder with the images to process settings.filepath_images = pathlib.Path(__file__).parent / '../examples/test1' settings.save_path = '.' # Root name of the output Folder for Result Files settings.save_folder_suffix = 'test' # Format and Image Sequence settings.frame_pattern_a = 'exp1_001_a.bmp' settings.frame_pattern_b = 'exp1_001_b.bmp' settings.num_iterations = 1 settings.show_plot = False settings.scale_plot = 100 settings.show_all_plots = False settings.invert = True windef.piv(settings)
# %% image_path = pathlib.Path(r'./2B_RectificatedFrames_Particles_50mmh') res_path = pathlib.Path(r'./Results/Open_PIV_results_64_Particles_50mmh/') # %% file_list = [] for path in sorted(image_path.rglob('*.tif')): # print(f'{path.name}') file_list.append(path.name) # %% file_list # %% settings = windef.Settings() 'Data related settings' # Folder with the images to process settings.filepath_images = image_path # Folder for the outputs settings.save_path = './Results/' # Root name of the output Folder for Result Files settings.save_folder_suffix = 'Particles_50mmh' # Format and Image Sequence settings.frame_pattern_a = '*.tif' # file_list[0] # settings.frame_pattern_b = file_list[1]
def process(self, args): """ Process chain as configured in the GUI. Parameters ---------- args : tuple Tuple as expected by the inherited run method: file_a (str) -- image file a file_b (str) -- image file b counter (int) -- index pointing to an element of the filename list """ file_a, file_b, counter = args frame_a = piv_tls.imread(file_a) frame_b = piv_tls.imread(file_b) # Smoothning script borrowed from openpiv.windef s = self.p['smoothn_val'] def smoothn(u, s): s = s u, _, _, _ = piv_smt.smoothn(u, s=s, isrobust=self.p['robust']) return (u) # delimiters placed here for safety delimiter = self.p['separator'] if delimiter == 'tab': delimiter = '\t' if delimiter == 'space': delimiter = ' ' # preprocessing print('\nPre-pocessing image pair: {}'.format(counter + 1)) if self.p['background_subtract'] \ and self.p['background_type'] == 'minA - minB': self.background = gen_background(self.p, frame_a, frame_b) frame_a = frame_a.astype(np.int32) frame_a = process_images(self, frame_a, self.GUI.preprocessing_methods, background=self.background) frame_b = frame_b.astype(np.int32) frame_b = process_images(self, frame_b, self.GUI.preprocessing_methods, background=self.background) print('Evaluating image pair: {}'.format(counter + 1)) # evaluation first pass start = time.time() passes = 1 # setup custom windowing if selected if self.parameter['custom_windowing']: corr_window_0 = self.parameter['corr_window_1'] overlap_0 = self.parameter['overlap_1'] for i in range(2, 8): if self.parameter['pass_%1d' % i]: passes += 1 else: break else: passes = self.parameter['coarse_factor'] if self.parameter['grid_refinement'] == 'all passes' \ and self.parameter['coarse_factor'] != 1: corr_window_0 = self.parameter['corr_window'] * \ 2**(self.parameter['coarse_factor'] - 1) overlap_0 = self.parameter['overlap'] * \ 2**(self.parameter['coarse_factor'] - 1) # Refine all passes after first when there are more than 1 pass. elif self.parameter['grid_refinement'] == '2nd pass on' \ and self.parameter['coarse_factor'] != 1: corr_window_0 = self.parameter['corr_window'] * \ 2**(self.parameter['coarse_factor'] - 2) overlap_0 = self.parameter['overlap'] * \ 2**(self.parameter['coarse_factor'] - 2) # If >>none<< is selected or something goes wrong, the window # size would remain the same. else: corr_window_0 = self.parameter['corr_window'] overlap_0 = self.parameter['overlap'] overlap_percent = overlap_0 / corr_window_0 sizeX = corr_window_0 u, v, sig2noise = piv_wdf.extended_search_area_piv( frame_a.astype(np.int32), frame_b.astype(np.int32), window_size=corr_window_0, overlap=overlap_0, search_area_size=corr_window_0, width=self.parameter['s2n_mask'], subpixel_method=self.parameter['subpixel_method'], sig2noise_method=self.parameter['sig2noise_method'], correlation_method=self.parameter['corr_method'], normalized_correlation=self.parameter['normalize_correlation']) x, y = piv_prc.get_coordinates(frame_a.shape, corr_window_0, overlap_0) # validating first pass mask = np.full_like(x, 0) if self.parameter['fp_vld_global_threshold']: u, v, Mask = piv_vld.global_val( u, v, u_thresholds=(self.parameter['fp_MinU'], self.parameter['fp_MaxU']), v_thresholds=(self.parameter['fp_MinV'], self.parameter['fp_MaxV'])) # consolidate effects of mask mask += Mask if self.parameter['fp_local_med']: u, v, Mask = piv_vld.local_median_val( u, v, u_threshold=self.parameter['fp_local_med'], v_threshold=self.parameter['fp_local_med'], size=self.parameter['fp_local_med_size']) mask += Mask if self.parameter['adv_repl']: u, v = piv_flt.replace_outliers( u, v, method=self.parameter['adv_repl_method'], max_iter=self.parameter['adv_repl_iter'], kernel_size=self.parameter['adv_repl_kernel']) print('Validated first pass result of image pair: {}.'.format(counter + 1)) # smoothning before deformation if 'each pass' is selected if self.parameter['smoothn_each_pass']: if self.parameter['smoothn_first_more']: s *= 2 u = smoothn(u, s) v = smoothn(v, s) print('Smoothned pass 1 for image pair: {}.'.format(counter + 1)) s = self.parameter['smoothn_val1'] print('Finished pass 1 for image pair: {}.'.format(counter + 1)) print("window size: " + str(corr_window_0)) print('overlap: ' + str(overlap_0), '\n') # evaluation of all other passes if passes != 1: iterations = passes - 1 for i in range(2, passes + 1): # setting up the windowing of each pass if self.parameter['custom_windowing']: corr_window = self.parameter['corr_window_%1d' % i] overlap = int(corr_window * overlap_percent) else: if self.parameter['grid_refinement'] == 'all passes' or \ self.parameter['grid_refinement'] == '2nd pass on': corr_window = self.parameter['corr_window'] * \ 2**(iterations - 1) overlap = self.parameter['overlap'] * \ 2**(iterations - 1) else: corr_window = self.parameter['corr_window'] overlap = self.parameter['overlap'] sizeX = corr_window # translate settings to windef settings object piv_wdf_settings = piv_wdf.Settings() piv_wdf_settings.correlation_method = \ self.parameter['corr_method'] piv_wdf_settings.normalized_correlation = \ self.parameter['normalize_correlation'] piv_wdf_settings.windowsizes = (corr_window, ) * (passes + 1) piv_wdf_settings.overlap = (overlap, ) * (passes + 1) piv_wdf_settings.num_iterations = passes piv_wdf_settings.subpixel_method = \ self.parameter['subpixel_method'] piv_wdf_settings.deformation_method = \ self.parameter['deformation_method'] piv_wdf_settings.interpolation_order = \ self.parameter['interpolation_order'] piv_wdf_settings.sig2noise_validate = True, piv_wdf_settings.sig2noise_method = \ self.parameter['sig2noise_method'] piv_wdf_settings.sig2noise_mask = self.parameter['s2n_mask'] # do the correlation x, y, u, v, sig2noise, mask = piv_wdf.multipass_img_deform( frame_a.astype(np.int32), frame_b.astype(np.int32), i, # current iteration x, y, u, v, piv_wdf_settings) # validate other passes if self.parameter['sp_vld_global_threshold']: u, v, Mask = piv_vld.global_val( u, v, u_thresholds=(self.parameter['sp_MinU'], self.parameter['sp_MaxU']), v_thresholds=(self.parameter['sp_MinV'], self.parameter['sp_MaxV'])) mask += Mask # consolidate effects of mask if self.parameter['sp_vld_global_threshold']: u, v, Mask = piv_vld.global_std( u, v, std_threshold=self.parameter['sp_std_threshold']) mask += Mask if self.parameter['sp_local_med_validation']: u, v, Mask = piv_vld.local_median_val( u, v, u_threshold=self.parameter['sp_local_med'], v_threshold=self.parameter['sp_local_med'], size=self.parameter['sp_local_med_size']) mask += Mask if self.parameter['adv_repl']: u, v = piv_flt.replace_outliers( u, v, method=self.parameter['adv_repl_method'], max_iter=self.parameter['adv_repl_iter'], kernel_size=self.parameter['adv_repl_kernel']) print('Validated pass {} of image pair: {}.'.format( i, counter + 1)) # smoothning each individual pass if 'each pass' is selected if self.parameter['smoothn_each_pass']: u = smoothn(u, s) v = smoothn(v, s) print('Smoothned pass {} for image pair: {}.'.format( i, counter + 1)) print('Finished pass {} for image pair: {}.'.format( i, counter + 1)) print("window size: " + str(corr_window)) print('overlap: ' + str(overlap), '\n') iterations -= 1 if self.p['flip_u']: u = np.flipud(u) if self.p['flip_v']: v = np.flipud(v) if self.p['invert_u']: u *= -1 if self.p['invert_v']: v *= -1 # scaling u = u / self.parameter['dt'] v = v / self.parameter['dt'] x, y, u, v = piv_scl.uniform(x, y, u, v, scaling_factor=self.parameter['scale']) end = time.time() # save data to file. out = np.vstack([m.ravel() for m in [x, y, u, v, mask, sig2noise]]) np.savetxt(self.save_fnames[counter], out.T, fmt='%8.4f', delimiter=delimiter) print('Processed image pair: {}'.format(counter + 1)) sizeY = sizeX sizeX = ((int(frame_a.shape[0] - sizeX) // (sizeX - (sizeX * overlap_percent))) + 1) sizeY = ((int(frame_a.shape[1] - sizeY) // (sizeY - (sizeY * overlap_percent))) + 1) time_per_vec = _round((((end - start) * 1000) / ((sizeX * sizeY) - 1)), 3) print('Process time: {} second(s)'.format((_round((end - start), 3)))) print('Number of vectors: {}'.format(int((sizeX * sizeY) - 1))) print('Time per vector: {} millisecond(s)'.format(time_per_vec))