Example #1
0
def inference(base_model_name, path_to_npz, data_format, input_files, plot):
    model_func = get_base_model(base_model_name)
    height, width = (368, 432)
    e = measure(
        lambda: TfPoseEstimator(path_to_npz,
                                model_func,
                                target_size=(width, height),
                                data_format=data_format),
        'create TfPoseEstimator')

    t0 = time.time()
    for idx, img_name in enumerate(input_files):
        image = measure(
            lambda: read_imgfile(
                img_name, width, height, data_format=data_format),
            'read_imgfile')
        humans, heatMap, pafMap = measure(lambda: e.inference(image),
                                          'e.inference')
        tl.logging.info('got %d humans from %s' % (len(humans), img_name))
        if humans:
            for h in humans:
                tl.logging.debug(h)
        if plot:
            if data_format == 'channels_first':
                image = image.transpose([1, 2, 0])
            plot_humans(image, heatMap, pafMap, humans, '%02d' % (idx + 1))
    tot = time.time() - t0
    mean = tot / len(input_files)
    tl.logging.info('inference all took: %f, mean: %f, FPS: %f' %
                    (tot, mean, 1.0 / mean))
Example #2
0
def main():
    args = parse_args()
    height, width, channel = 368, 432, 3
    images = []
    for name in args.images.split(','):
        x = read_imgfile(
            name, width, height,
            'channels_first')  # channels_first is required for tensorRT
        images.append(x)

    model_func = _get_model_func(args.base_model)
    model_inputs, model_outputs = model_func()
    input_names = [p.name[:-2] for p in model_inputs]
    output_names = [p.name[:-2] for p in model_outputs]

    print('input names: %s' % ','.join(input_names))
    print('output names: %s' %
          ','.join(output_names))  # outputs/conf,outputs/paf

    # with tf.Session() as sess:
    sess = tf.InteractiveSession()
    measure(lambda: tl.files.load_and_assign_npz_dict(args.path_to_npz, sess),
            'load npz')
    frozen_graph = tf.graph_util.convert_variables_to_constants(
        sess, sess.graph_def, output_names)
    tf_model = tf.graph_util.remove_training_nodes(frozen_graph)
    uff_model = measure(lambda: uff.from_tensorflow(tf_model, output_names),
                        'uff.from_tensorflow')
    print('uff model created')

    parser = uffparser.create_uff_parser()
    inputOrder = 0  # NCHW, https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/_nv_uff_parser_8h_source.html
    parser.register_input(input_names[0], (channel, height, width), inputOrder)
    for name in output_names:
        parser.register_output(name)

    G_LOGGER = trt.infer.ConsoleLogger(trt.infer.LogSeverity.INFO)
    max_batch_size = 1
    max_workspace_size = 1 << 30
    engine = measure(
        lambda: trt.utils.uff_to_trt_engine(
            G_LOGGER, uff_model, parser, max_batch_size, max_workspace_size),
        'trt.utils.uff_to_trt_engine')
    print('engine created')

    f_height, f_width = (height / 8, width / 8
                         )  #  TODO: derive from model_outputs
    post_process = PostProcessor((height, width), (f_height, f_width),
                                 'channels_first')

    for idx, x in enumerate(images):
        conf, paf = measure(lambda: infer(engine, x, 1), 'infer')
        humans, heat_up, paf_up = measure(lambda: post_process(conf, paf),
                                          'post_process')
        print('got %d humans' % (len(humans)))
        plot_humans(x.transpose([1, 2, 0]), heat_up, paf_up, humans,
                    '%02d' % (idx + 1))
def inference(path_to_freezed_model, input_files):
    h, w = 368, 432
    e = measure(lambda: TfPoseestimatorLoader(path_to_freezed_model, target_size=(w, h)),
                'create TfPoseestimatorLoader')
    for idx, img_name in enumerate(input_files):
        image = read_imgfile(img_name, w, h)
        humans, heatMap, pafMap = measure(lambda: e.inference(image), 'inference')
        print('got %d humans from %s' % (len(humans), img_name))
        if humans:
            for h in humans:
                print(h)
        plot_humans(image, heatMap, pafMap, humans, '%02d' % (idx + 1))
Example #4
0
    logger.info('validation %s set size=%d' % (coco_json_file, len(keys)))

    height, width = (config.MODEL.hin, config.MODEL.win)
    model_func = get_model(config.MODEL.name)
    estimator = TfPoseEstimator(os.path.join(config.MODEL.model_path,
                                             config.EVAL.model),
                                model_func,
                                target_size=(width, height))

    result = []
    for i, k in enumerate(tqdm(keys)):
        img_meta = cocoGt.loadImgs(k)[0]
        img_idx = img_meta['id']

        img_name = os.path.join(image_dir, img_meta['file_name'])
        image = read_imgfile(img_name, width, height)
        if image is None:
            logger.error('image not found, path=%s' % img_name)
            sys.exit(-1)

        # inference the image with the specified network
        humans, heatMap, pafMap = estimator.inference(
            image)  #paf_process is needed install script in scripts

        scores = 0
        ann_idx = cocoGt.getAnnIds(imgIds=[img_idx], catIds=[1])
        anns = cocoGt.loadAnns(ann_idx)
        for human in humans:
            item = {
                'image_id':
                img_idx,