Example #1
0
                       raw_data['max_item'],
                       name='Test',
                       num_negatives=500)

train_sampler = StratifiedPointwiseSampler(pos_ratio=0.2,
                                           batch_size=batch_size,
                                           dataset=train_dataset,
                                           num_process=5)
val_sampler = EvaluationSampler(batch_size=batch_size, dataset=val_dataset)
test_sampler = EvaluationSampler(batch_size=batch_size, dataset=test_dataset)

model = PMF(batch_size=batch_size,
            total_users=train_dataset.total_users(),
            total_items=train_dataset.total_items(),
            dim_user_embed=dim_embed,
            dim_item_embed=dim_embed,
            save_model_dir='pmf_recommender/',
            train=True,
            serve=True)

auc_evaluator = AUC()
recall_evaluator = Recall(recall_at=[10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
model_trainer = ModelTrainer(model=model)

model_trainer.train(total_it=total_it,
                    eval_it=eval_it,
                    save_it=save_it,
                    train_sampler=train_sampler,
                    eval_samplers=[val_sampler, test_sampler],
                    evaluators=[auc_evaluator, recall_evaluator])
Example #2
0
                                pos_ratio=pos_ratio)
    #Model Trainer
    eval_save_prefix = '/home/ubuntu/openrec/models/fhmf_models/{0}_{1}_{2}_{3}_{4}_{5}_{6}_{7}_{8}_{9}/'.format(
        sys.argv[1], sys.argv[2], sys.argv[3], sys.argv[4], sys.argv[5],
        sys.argv[6], sys.argv[7], sys.argv[8], sys.argv[9], sys.argv[10])
    if dataset_name == "amazon_book":
        eval_save_prefix = None
    model_trainer = ImplicitModelTrainer(batch_size=batch_size,
                                         test_batch_size=test_batch_size,
                                         train_dataset=train_dataset,
                                         model=fhmf_model,
                                         sampler=sampler,
                                         eval_save_prefix=eval_save_prefix)
    #Evaluators
    auc_evaluator = AUC()
    recall_evaluator = Recall(recall_at=[10, 50, 100, 300])
    #mse_evaluator = MSE()
    #Train
    model_trainer.train(num_itr=num_itr,
                        display_itr=display_itr,
                        eval_datasets=[focused_val_set, focused_test_set],
                        evaluators=[auc_evaluator, recall_evaluator],
                        num_negatives=num_negatives)

elif recommender == "PMF":

    model = PMF(batch_size=batch_size,
                max_user=train_dataset.max_user(),
                max_item=train_dataset.max_item(),
                dim_embed=50,
                opt='Adam',
Example #3
0
trainset_path = "/Users/xuan/Documents/Specialization Project/openrec/dataset/citeulike/user_data_train.npy"
###

#
trainset = np.load(trainset_path)
trainset = trainset['user_id']
frequency = dict()
for i in trainset:
    if i in frequency:
        frequency[i] += 1
    else:
        frequency[i] = 1
#

auc_evaluator = AUC()
recall_evaluator = Recall(recall_at=[10])
precision_evaluator = Precision(precision_at=[10])
ndcg_evaluator = NDCG(ndcg_at=[10])

f = open(infilename, 'rb')
p = pickle.load(f)
f.close()

score_per_user = dict()
count_per_user = dict()

for user in p['users']:
    neg_scores = p['results'][user][:p['num_negatives']]
    for i in range(len(p['user_items'][user][p['num_negatives'] : ])):
        pos_score = p['results'][user][p['num_negatives'] + i]
        rank_above = np.array([ float(np.sum(neg_scores > pos_score)) ])
                       total_items,
                       sortby='ts',
                       name='Test')

train_sampler = TemporalSampler(batch_size=batch_size,
                                max_seq_len=max_seq_len,
                                dataset=train_dataset,
                                num_process=1)
test_sampler = TemporalEvaluationSampler(dataset=test_dataset,
                                         max_seq_len=max_seq_len)

model = VanillaYouTubeRec(batch_size=batch_size,
                          total_items=train_dataset.total_items(),
                          max_seq_len=max_seq_len,
                          dim_item_embed=dim_item_embed,
                          save_model_dir='vanilla_youtube_recommender/',
                          train=True,
                          serve=True)

model_trainer = ModelTrainer(model=model)

auc_evaluator = AUC()
recall_evaluator = Recall(recall_at=[100, 200, 300, 400, 500])

model_trainer.train(total_iter=total_iter,
                    eval_iter=eval_iter,
                    save_iter=save_iter,
                    train_sampler=train_sampler,
                    eval_samplers=[test_sampler],
                    evaluators=[auc_evaluator, recall_evaluator])
Example #5
0
                       total_users=total_users,
                       total_items=total_items,
                       sortby='ts',
                       name='Test')

train_sampler = TemporalSampler(batch_size=batch_size,
                                max_seq_len=max_seq_len,
                                dataset=train_dataset,
                                num_process=1)
test_sampler = TemporalEvaluationSampler(dataset=test_dataset,
                                         max_seq_len=max_seq_len)

rnn_model = RNNRec(batch_size=batch_size,
                   dim_item_embed=dim_item_embed,
                   max_seq_len=max_seq_len,
                   total_items=train_dataset.total_items(),
                   num_units=num_units,
                   save_model_dir='rnn_recommender/',
                   train=True,
                   serve=True)

model_trainer = ModelTrainer(model=rnn_model)

auc_evaluator = AUC()
recall_evaluator = Recall(recall_at=[100, 500])
model_trainer.train(total_iter=total_iter,
                    eval_iter=eval_iter,
                    save_iter=save_iter,
                    train_sampler=train_sampler,
                    eval_samplers=[test_sampler],
                    evaluators=[auc_evaluator, recall_evaluator])