Example #1
0
def tracker(path, x, y):
    """
        Continuously project the point (x, y) onto the given path (closest distance)

        This is an internal function. C.f. track_projection_on_path for details and assumptions.

        returns in structure tracking_results:
            tracked_index    - the index in the path array for the closest distance to (x, y)
            Delta_index      - the change of the index to the previous lookup
            distance         - the absolute value of the closest distance of (x, y) to the path

            reached_the_end_of_currently_available_path_data
                             - reached the end of the path
    """

    #
    # define the optimization problem
    #

    # pack parameters
    par = (x, y)

    def J(path, index, par):

        # unpack parameters
        x, y = par

        # cost function J: index -> distance
        x_test, y_test = sample_path_xy(path, index)
        distance = distance_between(x_test, y_test, x, y)

        # cost
        return distance

    #
    # continuous optimization
    #

    results = continuous_optimization_along_path(path, dy.int32(0), J, par)

    #
    distance = results['J_star']
    minimal_distance_reached = results['reached_minimum']

    #
    tracking_results = dy.structure()
    tracking_results['tracked_index'] = results['optimal_index']
    tracking_results['Delta_index'] = results['Delta_index']
    tracking_results['distance'] = distance
    tracking_results['minimal_distance_reached'] = minimal_distance_reached
    tracking_results[
        'reached_the_end_of_currently_available_path_data'] = results[
            'reached_the_end_of_currently_available_path_data']

    return tracking_results
Example #2
0
def path_following(
        controller,
        par, 
        path, 
        x, y, psi, velocity, 
        Delta_l_r = 0.0, 
        Delta_l_r_dot = None, 
        psi_dot = None, 
        velocity_dot = None, 
        Delta_l_r_dotdot = None, 
        Ts=0.01
    ):
    """
        Basic steering control for path tracking and user-defined lateral error compensation
        
        Implements steering control for exact path following.
    
        Assumed is a kinematic bicycle model.
        Herein, the steering angle (delta) is the control variable. The variables
        x, y, psi, and velocity are measurements taken from the controlled system.
        The lateral offset Delta_l_r to the path is the reference for control.
        The optional signal Delta_l_r_dot describes the time derivative of Delta_l_r.
        
        controller - callback function that defines the error compensating controller
        par        - parameters that are passed to the callback
        Ts         - the sampling time

        Return values
        -------------

        results = {}
        results['x_r']                      # the current x-position of the closest point on the reference path
        results['y_r']                      # the current y-position of the closest point on the reference path
        results['v_star']                   # the current velocity of the closest point on the reference path
        results['d_star']                   # the current distance parameter of the closest point on the reference path
        results['psi_r']                    # the current path-tangent orientation angle in the closest point on the reference path
        results['psi_r_dot']                # the time derivative of psi_r
        results['Delta_l_r']                # the reference to the distance to the path
        results['Delta_l_r_dot']            # optional: the time derivative of Delta_l_r
        results['Delta_l']                  # the distance to the closest point on the reference path
        results['Delta_u']                  # small steering delta
        results['delta']                    # the requested steering angle / the control variable

        in case Delta_l_r_dot, psi_dot, velocity_dot, and Delta_l_r_dotdot are given
        the steering derivatives can be computed.

        results['Delta_u_dot']              # the derivative of Delta_u
        results['delta_dot']                # the derivative of delta_dot


    """
    index_head, _ = path_horizon_head_index(path)

    # structure for output signals
    results = dy.structure()

    # track the evolution of the closest point on the path to the vehicles position
    minimal_number_of_path_samples_to_start = 5 # depends on tracker(); should be at least 2
    with dy.sub_if( index_head > minimal_number_of_path_samples_to_start, subsystem_name='tracker' ) as system:

        tracking_results = tracker(path, x, y)

        system.set_outputs( tracking_results.to_list() )
    tracking_results.replace_signals( system.outputs )


    output_valid              = tracking_results['minimal_distance_reached']
    need_more_path_input_data = tracking_results['reached_the_end_of_currently_available_path_data']


    # in case the lookup was successful, run further operations on the path
    # to generate references and run the controller.
    with dy.sub_if( output_valid, prevent_output_computation=False, subsystem_name='controller') as system:

        # ps - path sample
        ps = track_projection_on_path(path, x, y, tracking_results = tracking_results)

        #
        # project the vehicle velocity onto the path yielding v_star 
        #
        # Used formula inside project_velocity_on_path:
        #   v_star = d d_star / dt = v * cos( Delta_u ) / ( 1 - Delta_l * K(d_star) ) 
        #

        Delta_u = dy.signal() # feedback from control
        v_star = project_velocity_on_path(velocity, Delta_u, ps['Delta_l'], ps['K_r'])


        #
        # compute an enhanced (less noise) signal for the path orientation psi_r by integrating the 
        # curvature profile and fusing the result with ps['psi_r'] to mitigate the integration drift.
        #

        psi_r, psi_r_dot = compute_path_orientation_from_curvature( Ts, v_star, ps['psi_r'], ps['K_r'], L=1.0 )


        #
        # controller callback
        #

        references = {
            'Delta_l_r'     : Delta_l_r,
            'Delta_l_r_dot' : Delta_l_r_dot,
            'Delta_l_r_dotdot' : Delta_l_r_dotdot
        }

        # Delta_l_dot might be further computed which improves the accuracy of the derivatives
        # in case of strong feedback control activity.  
        Delta_l_dot = None  # TODO: implement

        measurements = {
            'velocity'     : velocity,
            'velocity_dot' : velocity_dot,
            'psi'          : psi,
            'psi_dot'      : psi_dot,
            'Delta_l'      : ps['Delta_l'],
            'Delta_l_dot'  : Delta_l_dot
        }

        u, u_dot = controller( references, measurements, par )


        #
        # path tracking
        #
        # resulting lateral model u --> Delta_l : 1/s
        #

        Delta_u << dy.asin( dy.saturate(u / velocity, -0.99, 0.99) )
        delta = dy.unwrap_angle(angle=psi_r - psi + Delta_u, normalize_around_zero = True)

        # compute the derivatives of the steering angle (steering rate)
        if psi_dot is not None and Delta_l_r_dot is not None and velocity_dot is not None and Delta_l_r_dotdot is not None:

            Delta_u_dot = dy.cos( u / velocity ) * ( velocity * u_dot - velocity_dot * u ) / ( velocity*velocity )
            delta_dot = psi_r_dot - psi_dot + Delta_u_dot

            results['Delta_u_dot']       = Delta_u_dot
            results['delta_dot']         = delta_dot



        # collect resulting signals
        results['x_r']           = ps['x_r']      # the current x-position of the closest point on the reference path
        results['y_r']           = ps['y_r']      # the current y-position of the closest point on the reference path
        results['v_star']        = v_star         # the current velocity of the closest point on the reference path
        results['d_star']        = ps['d_star']   # the current distance parameter of the closest point on the reference path
        results['psi_r']         = psi_r          # the current path-tangent orientation angle in the closest point on the reference path
        results['K_r']           = ps['K_r']      # the curvature
        results['psi_r_dot']     = psi_r_dot      # the time derivative of psi_r

        results['Delta_u']       = Delta_u        # small steering delta
        results['delta']         = delta          # the requested steering angle / the control variable 

        results['Delta_l']       = ps['Delta_l']  # the distance to the closest point on the reference path
        results['Delta_l_dot']   = dy.float64(math.nan)  # d/dt Delta_l   TODO: implement


        # results['line_tracking_internals']  = ps['internals']


        # return
        system.set_outputs( results.to_list() )
    results.replace_signals( system.outputs )

    results['tracked_index'] = tracking_results['tracked_index']
    results['Delta_l_r']     = Delta_l_r      # the reference to the distance to the path

    results['need_more_path_input_data']     = need_more_path_input_data
    results['output_valid']                  = output_valid

    results['read_position']         = results['tracked_index'] + 1
    results['minimal_read_position'] = results['read_position'] - 100

    return results
Example #3
0
def path_lateral_modification2(
        input_path, 
        par,
        Ts,
        wheelbase, 
        velocity, 
        Delta_l_r, 
        Delta_l_r_dot, 
        Delta_l_r_dotdot, 
        d0, x0, y0, psi0, delta0, delta_dot0
    ):

    """
        Take an input path, modify it according to a given lateral distance profile,
        and generate a new path.

        Technically this combines a controller that causes an simulated vehicle to follows 
        the input path with defined lateral modifications. 

        Note: this implementation is meant as a callback routine for async_path_data_handler()
    """
    # create placeholders for the plant output signals
    x       = dy.signal()
    y       = dy.signal()
    psi     = dy.signal()
    psi_dot = dy.signal()

    if 'lateral_controller' not in par:
        # controller
        results = path_following_controller_P(
            input_path,

            x, y, psi,
            velocity,

            Delta_l_r        = Delta_l_r,
            Delta_l_r_dot    = Delta_l_r_dot,
            Delta_l_r_dotdot = Delta_l_r_dotdot,

            psi_dot          = dy.delay(psi_dot),
            velocity_dot     = dy.float64(0),

            Ts               = Ts,
            k_p              = 1
        )
    else:

        # path following and a user-defined linearising controller
        results = path_following(
            par['lateral_controller'],            # callback to the implementation of P-control
            par['lateral_controller_par'],        # parameters to the callback

            input_path,

            x, y, psi, 
            velocity, 

            Delta_l_r         = Delta_l_r, 
            Delta_l_r_dot     = Delta_l_r_dot, 
            Delta_l_r_dotdot  = Delta_l_r_dotdot, 

            psi_dot           = dy.delay(psi_dot), 
            velocity_dot      = dy.float64(0),  # velocity_dot 

            Ts                = Ts
        )


    #
    # The model of the vehicle
    #

    with dy.sub_if( results['output_valid'], prevent_output_computation=False, subsystem_name='simulation_model') as system:

        results['output_valid'].set_name('output_valid')

        results['delta'].set_name('delta')

        # steering angle limit
        limited_steering = dy.saturate(u=results['delta'], lower_limit=-math.pi/2.0, upper_limit=math.pi/2.0)

        # the model of the vehicle
        x_, y_, psi_, x_dot, y_dot, psi_dot_ = discrete_time_bicycle_model(
            limited_steering, 
            velocity, 
            Ts, wheelbase,
            x0, y0, psi0
            )

        # driven distance
        d = dy.euler_integrator(velocity, Ts, initial_state=d0)

        # outputs
        model_outputs = dy.structure(
            d       = d,
            x       = x_,
            y       = y_,
            psi     = psi_,
            psi_dot = dy.delay(psi_dot_) # NOTE: delay introduced to avoid algebraic loops, wait for improved ORTD
        )
        system.set_outputs(model_outputs.to_list())
    model_outputs.replace_signals( system.outputs )



    # close the feedback loops
    x       << model_outputs['x']
    y       << model_outputs['y']
    psi     << model_outputs['psi']
    psi_dot << model_outputs['psi_dot']

    #
    output_path = dy.structure({
        'd'       : model_outputs['d'],
        'x'       : model_outputs['x'],
        'y'       : model_outputs['y'],
        'psi'     : psi,
        'psi_dot' : psi_dot,

        'psi_r' : psi       + results['delta'],                   # orientation angle of the path the vehicle is drawing
        'K'     : ( psi_dot + results['delta_dot'] ) / velocity , # curvature of the path the vehicle is drawing

        'delta'         : results['delta'],
        'delta_dot'     : results['delta_dot'],

        'd_star'        : results['d_star'],
        'tracked_index' : results['tracked_index'],

        'output_valid'              : results['output_valid'],
        'need_more_path_input_data' : results['need_more_path_input_data'],

        'read_position'             : results['read_position'],
        'minimal_read_position'     : results['minimal_read_position']
    })

    return output_path
Example #4
0
def continuous_optimization_along_path(path, current_index, J, par):
    """
        Minimize the given cost function by varying the index of the path array  


                  <----- Delta_index_track ----->
        array: X  X  X  X  X  X  X  X  X  X  X  X  X  X  X 
                  ^               
            current_index
    """

    if 'Delta_d' in path:
        # constant sampling interval in distance
        # computation can be simplified
        pass

    # get the highest available array index in the horizon
    index_head, _ = path_horizon_head_index(path)

    #
    #
    #

    Delta_index_track = dy.signal()

    # initialize J_star
    J_star_0 = J(path, current_index + Delta_index_track, par)

    #
    # compute the direction (gradient) in which J has its decent
    # if true: with increasing index J increases  --> decrease search index
    # if false: with increasing index J decreases --> increase search index
    #
    J_prev_index = J(path, current_index + Delta_index_track - 1, par)
    J_Delta_to_next_index = J_star_0 - J_prev_index

    search_index_increment = dy.conditional_overwrite(
        dy.int32(1), J_Delta_to_next_index > 0, dy.int32(-1))

    # loop to find the minimum of J
    with dy.sub_loop(max_iterations=1000,
                     subsystem_name='optim_loop') as system:

        # J_star(k) - the smallest J found so far
        J_star = dy.signal()

        # inc- / decrease the search index
        Delta_index_previous_step, Delta_index = dy.sum2(
            search_index_increment, initial_state=0)
        index_to_investigate = current_index + Delta_index_track + Delta_index

        # sample the cost function and check if it got smaller in this step
        J_to_verify = J(path, index_to_investigate, par)
        step_caused_improvement = J_to_verify < J_star

        # in case the step yielded a lower cost, replace the prev. minimal cost
        J_star_next = dy.conditional_overwrite(J_star, step_caused_improvement,
                                               J_to_verify)

        # state for J_star
        J_star << dy.delay(J_star_next, initial_state=J_star_0)

        #
        # loop break conditions
        #

        # when reaching the end of the available data, stop the loop and indicate the need for extending the horizon
        reached_the_end_of_currently_available_path_data = index_to_investigate >= index_head  # reached the end of the input data?

        # similarly check for the begin ...
        reached_the_begin_of_currently_available_path_data = index_to_investigate - 1 <= path_horizon_tail_index(
            path)[0]

        # in case the iteration did not reduce the cost, assume that the minimum was reached in the prev. iteration
        reached_minimum = dy.logic_not(step_caused_improvement)

        system.loop_until(
            dy.logic_or(
                dy.logic_or(reached_minimum,
                            reached_the_end_of_currently_available_path_data),
                reached_the_begin_of_currently_available_path_data).set_name(
                    'loop_until'))

        # assign signals names to appear in the generated source code
        J_star_0.set_name('J_star_0')
        search_index_increment.set_name('search_index_increment')
        J_star.set_name('J_star')
        Delta_index.set_name('Delta_index')
        index_head.set_name('index_head')
        index_to_investigate.set_name('index_to_investigate')
        J_to_verify.set_name('J_to_verify')
        step_caused_improvement.set_name('step_caused_improvement')

        # return
        outputs = dy.structure()
        outputs['Delta_index'] = Delta_index_previous_step
        outputs['J_star'] = J_star_next
        outputs['reached_minimum'] = reached_minimum
        outputs[
            'reached_the_end_of_currently_available_path_data'] = reached_the_end_of_currently_available_path_data
        outputs['index_head'] = index_head * 1
        outputs['index_to_investigate'] = index_to_investigate
        outputs['J_to_verify'] = J_to_verify

        system.set_outputs(outputs.to_list())
    outputs.replace_signals(system.outputs)

    Delta_index = outputs['Delta_index']
    J_star = outputs['J_star']
    reached_minimum = outputs['reached_minimum']
    reached_the_end_of_currently_available_path_data = outputs[
        'reached_the_end_of_currently_available_path_data']

    # Introduce dy.sink(signal) in ORTD to ensure the given signals is not optimized out and becomes visible in the debugging traces
    dummy = 0 * outputs['index_head'] + 0 * outputs[
        'index_to_investigate'] + 0 * outputs['J_to_verify']

    Delta_index_track_next = Delta_index_track + Delta_index
    Delta_index_track << dy.delay(
        Delta_index_track_next, initial_state=1
    )  # start at 1 so that the backwards gradient can be computed at index=1
    Delta_index_track.set_name('Delta_index_track')

    # optimal index
    optimal_index = current_index + Delta_index_track_next

    results = dy.structure()
    results['optimal_index'] = optimal_index
    results['J_star'] = J_star + 0 * dummy
    results['Delta_index'] = Delta_index
    results['Delta_index_track_next'] = Delta_index_track_next
    results['reached_minimum'] = reached_minimum
    results[
        'reached_the_end_of_currently_available_path_data'] = reached_the_end_of_currently_available_path_data

    return results
def path_tracking(path, par, Ts, velocity, velocity_dot, x, y, x_dot, y_dot,
                  Delta_u, Delta_u_dot):
    """
        Take an input path, modify it according to a given lateral distance profile,
        and generate a new path.

        Technically this combines a controller that causes an simulated vehicle to follows 
        the input path with defined lateral modifications. 

        Note: this implementation is meant as a callback routine for async_path_data_handler()
    """

    index_head, _ = path_horizon_head_index(path)

    # structure for output signals
    results = dy.structure()

    # track the evolution of the closest point on the path to the vehicles position
    minimal_number_of_path_samples_to_start = 5  # depends on tracker(); should be at least 2
    with dy.sub_if(index_head > minimal_number_of_path_samples_to_start,
                   subsystem_name='tracker') as system:

        tracking_results = tracker(path, x, y)

        system.set_outputs(tracking_results.to_list())
    tracking_results.replace_signals(system.outputs)

    output_valid = tracking_results['minimal_distance_reached']
    need_more_path_input_data = tracking_results[
        'reached_the_end_of_currently_available_path_data']

    # in case the lookup was successful, run further operations on the path
    # to generate references and run the controller.
    with dy.sub_if(output_valid,
                   prevent_output_computation=False,
                   subsystem_name='controller') as system:

        # ps - path sample
        ps = track_projection_on_path(path,
                                      x,
                                      y,
                                      tracking_results=tracking_results)

        #
        # project the vehicle velocity onto the path yielding v_star
        #
        # Used formula inside project_velocity_on_path:
        #   v_star = d d_star / dt = v * cos( Delta_u ) / ( 1 - Delta_l * K(d_star) )
        #

        v_star = project_velocity_on_path(velocity, Delta_u, ps['Delta_l'],
                                          ps['K_r'])

        #
        # compute an enhanced (less noise) signal for the path orientation psi_r by integrating the
        # curvature profile and fusing the result with ps['psi_r'] to mitigate the integration drift.
        #

        psi_r, psi_r_dot = compute_path_orientation_from_curvature(Ts,
                                                                   v_star,
                                                                   ps['psi_r'],
                                                                   ps['K_r'],
                                                                   L=1.0)

        # collect resulting signals
        results['x_r'] = ps[
            'x_r']  # the current x-position of the closest point on the reference path
        results['y_r'] = ps[
            'y_r']  # the current y-position of the closest point on the reference path
        results[
            'v_star'] = v_star  # the current velocity of the closest point on the reference path
        results['d_star'] = ps[
            'd_star']  # the current distance parameter of the closest point on the reference path
        results[
            'psi_r'] = psi_r  # the current path-tangent orientation angle in the closest point on the reference path
        results['psi_r_dot'] = psi_r_dot  # the time derivative of psi_r
        results['K_r'] = ps['K_r']  # the curvature

        results['Delta_l'] = ps[
            'Delta_l']  # the distance to the closest point on the reference path
        results['Delta_l_dot'] = dy.float64(
            math.nan)  # d/dt Delta_l   TODO: implement

        # results['line_tracking_internals']  = ps['internals']

        # return
        system.set_outputs(results.to_list())
    results.replace_signals(system.outputs)

    #
    output_path = dy.structure({
        'tracked_index':
        tracking_results['tracked_index'],
        'd_star':
        results['d_star'],
        'v_star':
        results['v_star'],
        'x_r':
        results['x_r'],
        'y_r':
        results['y_r'],
        'psi_r':
        results['psi_r'],
        'psi_r_dot':
        results['psi_r_dot'],
        'K_r':
        results['K_r'],
        'Delta_l':
        results['Delta_l'],
        'Delta_l_dot':
        results['Delta_l_dot'],
        'output_valid':
        output_valid,
        'need_more_path_input_data':
        need_more_path_input_data,
        'read_position':
        tracking_results['tracked_index'] + 1,
        'minimal_read_position':
        tracking_results['tracked_index'] - 100
    })

    return output_path
def path_lateral_modification2(Ts, wheelbase, input_path, velocity, Delta_l_r, Delta_l_r_dot, Delta_l_r_dotdot):
    """
        Take an input path, modify it according to a given lateral distance profile,
        and generate a new path.
    """
    # create placeholders for the plant output signals
    x       = dy.signal()
    y       = dy.signal()
    psi     = dy.signal()
    psi_dot = dy.signal()

    # controller
    results = path_following_controller_P(
        input_path,
        x, y, psi, 
        velocity, 
        Delta_l_r        = Delta_l_r, 
        Delta_l_r_dot    = Delta_l_r_dot,
        Delta_l_r_dotdot = Delta_l_r_dotdot,
        psi_dot          = dy.delay(psi_dot),
        velocity_dot     = dy.float64(0),
        Ts               = Ts,
        k_p              = 1
    )


    #
    # The model of the vehicle including a disturbance
    #

    with dy.sub_if( results['output_valid'], prevent_output_computation=False, subsystem_name='simulation_model') as system:

        results['output_valid'].set_name('output_valid')

        results['delta'].set_name('delta')

        # steering angle limit
        limited_steering = dy.saturate(u=results['delta'], lower_limit=-math.pi/2.0, upper_limit=math.pi/2.0)

        # the model of the vehicle
        x_, y_, psi_, x_dot, y_dot, psi_dot_ = discrete_time_bicycle_model(limited_steering, velocity, Ts, wheelbase)

        # driven distance
        d = dy.euler_integrator(velocity, Ts)

        # outputs
        model_outputs = dy.structure(
            d       = d,
            x       = x_,
            y       = y_,
            psi     = psi_,
            psi_dot = dy.delay(psi_dot_) # NOTE: delay introduced to avoid algebraic loops, wait for improved ORTD
        )
        system.set_outputs(model_outputs.to_list())
    model_outputs.replace_signals( system.outputs )



    # close the feedback loops
    x       << model_outputs['x']
    y       << model_outputs['y']
    psi     << model_outputs['psi']
    psi_dot << model_outputs['psi_dot']

    #
    output_path = dy.structure({
        'd'       : model_outputs['d'],
        'x'       : model_outputs['x'],
        'y'       : model_outputs['y'],
        'psi'     : psi,
        'psi_dot' : psi_dot,

        'psi_r' : psi       + results['delta'],
        'K'     : ( psi_dot + results['delta_dot'] ) / velocity ,

        'delta'         : results['delta'],
        'delta_dot'     : results['delta_dot'],

        'd_star'        : results['d_star'],
        'tracked_index' : results['tracked_index'],

        'output_valid'              : results['output_valid'],
        'need_more_path_input_data' : results['need_more_path_input_data'],

        'read_position'             : results['read_position'],
        'minimal_read_position'     : results['minimal_read_position']
    })

    return output_path
def path_following_controller_P( path, x, y, psi, velocity, Delta_l_r = 0.0, Delta_l_r_dot = None, k_p=2.0, Ts=0.01, psi_dot = None, velocity_dot = None, Delta_l_r_dotdot = None, Delta_l_dot = None  ):
    """
        Basic steering control for path tracking using proportional lateral error compensation
        
        Path following steering control for exact path following and P-control to control the lateral 
        distance to the path are combined.
    
        Controlls a kinematic bicycle model (assumption) to follow the given path.
        Herein, the steering angle delta is the control variable. The variables
        x, y, psi, and velocity are measurements taken from the controlled system.
        The lateral offset Delta_l_r to the path is the reference. The optional
        signal Delta_l_r_dot describes the time derivative of Delta_l_r.
        
        Ts - the sampling time

        Return values
        -------------

        results = {}
        results['x_r']                      # the current x-position of the closest point on the reference path
        results['y_r']                      # the current y-position of the closest point on the reference path
        results['v_star']                   # the current velocity of the closest point on the reference path
        results['d_star']                   # the current distance parameter of the closest point on the reference path
        results['psi_r']                    # the current path-tangent orientation angle in the closest point on the reference path
        results['psi_r_dot']                # the time derivative of psi_r
        results['Delta_l_r']                # the reference to the distance to the path
        results['Delta_l_r_dot']            # optional: the time derivative of Delta_l_r
        results['Delta_l']                  # the distance to the closest point on the reference path
        results['Delta_u']                  # small steering delta
        results['delta']                    # the requested steering angle / the control variable

        in case Delta_l_r_dot, psi_dot, velocity_dot, and Delta_l_r_dotdot are given
        the steering derivatives can be computed.

        results['Delta_u_dot']              # the derivative of Delta_u
        results['delta_dot']                # the derivative of delta_dot

        Optionally, Delta_l_dot might be further given which improves the accuracy of the derivatives
        in case of strong feedback control activity.  

    """
    index_head, _ = path_horizon_head_index(path)

    # structure for output signals
    results = dy.structure()



    # track the evolution of the closest point on the path to the vehicles position
    with dy.sub_if( index_head > 10 ) as system:

        tracking_results = tracker(path, x, y)

        system.set_outputs( tracking_results.to_list() )

    tracking_results.replace_signals( system.outputs )


    output_valid              = tracking_results['minimal_distance_reached']
    need_more_path_input_data = tracking_results['reached_the_end_of_currently_available_path_data']


    # position_on_path_found = dy.boolean(True)

    with dy.sub_if( output_valid, prevent_output_computation=False, subsystem_name='controller') as system:

        # ps - path sample
        ps = track_projection_on_path(path, x, y, tracking_results = tracking_results)

        #
        # project the vehicle velocity onto the path yielding v_star 
        #
        # Used formula inside project_velocity_on_path:
        #   v_star = d d_star / dt = v * cos( Delta_u ) / ( 1 - Delta_l * K(d_star) ) 
        #

        Delta_u = dy.signal() # feedback from control
        v_star = project_velocity_on_path(velocity, Delta_u, ps['Delta_l'], ps['K_r'])


        #
        # compute an enhanced (less noise) signal for the path orientation psi_r by integrating the 
        # curvature profile and fusing the result with ps['psi_r'] to mitigate the integration drift.
        #

        psi_r, psi_r_dot = compute_path_orientation_from_curvature( Ts, v_star, ps['psi_r'], ps['K_r'], L=1.0 )
        
        # feedback control
        u_fb = k_p * (Delta_l_r - ps['Delta_l'])

        if Delta_l_r_dot is not None:
            u = Delta_l_r_dot + u_fb
        else:
            u = u_fb

        # path tracking
        # resulting lateral model u --> Delta_l : 1/s
        Delta_u << dy.asin( dy.saturate(u / velocity, -0.99, 0.99) )
        delta = dy.unwrap_angle(angle=psi_r - psi + Delta_u, normalize_around_zero = True)

        # compute the derivatives of the steering angle (steering rate)
        if psi_dot is not None and Delta_l_r_dot is not None and velocity_dot is not None and Delta_l_r_dotdot is not None:
            
            if Delta_l_dot is None:
                u_dot = Delta_l_r_dotdot # + 0 neglect numerical random walk error compensation 
            else:
                u_dot = Delta_l_r_dotdot + Delta_l_dot


            Delta_u_dot = dy.cos( u / velocity ) * ( velocity * u_dot - velocity_dot * u ) / ( velocity*velocity )
            delta_dot = psi_r_dot - psi_dot + Delta_u_dot

            results['Delta_u_dot']       = Delta_u_dot
            results['delta_dot']         = delta_dot



        # collect resulting signals
        results['x_r']           = ps['x_r']      # the current x-position of the closest point on the reference path
        results['y_r']           = ps['y_r']      # the current y-position of the closest point on the reference path
        results['v_star']        = v_star         # the current velocity of the closest point on the reference path
        results['d_star']        = ps['d_star']   # the current distance parameter of the closest point on the reference path
        results['psi_r']         = psi_r          # the current path-tangent orientation angle in the closest point on the reference path
        results['psi_r_dot']     = psi_r_dot      # the time derivative of psi_r
        results['Delta_l']       = ps['Delta_l']  # the distance to the closest point on the reference path
        results['Delta_u']       = Delta_u        # small steering delta
        results['delta']         = delta          # the requested steering angle / the control variable 


        # results['line_tracking_internals']  = ps['internals']


        # return
        system.set_outputs( results.to_list() )
    results.replace_signals( system.outputs )

    results['tracked_index'] = tracking_results['tracked_index']
    results['Delta_l_r']     = Delta_l_r      # the reference to the distance to the path

    results['need_more_path_input_data']     = need_more_path_input_data
    results['output_valid']                  = output_valid

    results['read_position']         = results['tracked_index'] + 1
    results['minimal_read_position'] = results['read_position'] - 100

    return results
def tracker(path, x, y):
    """
        Continuously project the point (x, y) onto the given path (closest distance)

        This is an internal function. C.f. track_projection_on_path for details and assumptions.

        returns in structure tracking_results:
            tracked_index    - the index in the path array for the closest distance to (x, y)
            Delta_index      - the change of the index to the previous lookup
            distance         - the absolute value of the closest distance of (x, y) to the path

            reached_the_end_of_currently_available_path_data
                             - reached the end of the path
    """
    index_head, _ = path_horizon_head_index(path)
    index_head.set_name('index_head')

    # the index that currently describes the index on the path with the closest distance to (x,y)
    index_track = dy.signal().set_name('index_track')

    with dy.sub_loop( max_iterations=200, subsystem_name='tracker_loop' ) as system:

        search_index_increment = dy.int32(1) # positive increment assuming positive velocity

        Delta_index = dy.sum(search_index_increment, initial_state=-1 )
        Delta_index_previous_step = Delta_index - search_index_increment

        # the index at which to compute the distance to and see if it is the minimum 
        index_to_investigate  = index_track + Delta_index
        x_test, y_test        = sample_path_xy(path, index_to_investigate)
        distance              = distance_between( x_test, y_test, x, y )

        distance_previous_step = dy.delay(distance, initial_state=100000)
        minimal_distance_reached = distance_previous_step < distance

        # introduce signal names
        distance.set_name('distance')
        minimal_distance_reached.set_name('minimal_distance_reached')

        # break condition
        reached_the_end_of_currently_available_path_data = index_to_investigate >= index_head # reached the end of the input data?
        system.loop_until( dy.logic_or( minimal_distance_reached, reached_the_end_of_currently_available_path_data ) )

        # return        
        system.set_outputs([ 
            Delta_index_previous_step.set_name('Delta_index_previous_step'),
            distance_previous_step.set_name('distance_previous_step'),
            minimal_distance_reached.set_name('minimal_distance_reached'), 
            reached_the_end_of_currently_available_path_data.set_name('reached_the_end_of_currently_available_path_data')
        ])


    Delta_index                                      = system.outputs[0].set_name('tracker_Delta_index')
    distance                                         = system.outputs[1].set_name('distance')
    minimal_distance_reached                         = system.outputs[2].set_name('minimal_distance_reached')
    reached_the_end_of_currently_available_path_data = system.outputs[3].set_name('reached_the_end_of_currently_available_path_data')

    # update current state of index_track 
    index_track_next = index_track + Delta_index 
    index_track << dy.delay(index_track_next, initial_state=1)

    #
    tracking_results = dy.structure()
    tracking_results['tracked_index']                                    = index_track_next
    tracking_results['Delta_index']                                      = Delta_index
    tracking_results['distance']                                         = distance
    tracking_results['minimal_distance_reached']                         = minimal_distance_reached
    tracking_results['reached_the_end_of_currently_available_path_data'] = reached_the_end_of_currently_available_path_data

    # return index_track_next, Delta_index, distance, minimal_distance_reached, reached_the_end_of_currently_available_path_data

    return tracking_results